Preprint Article Version 2 Preserved in Portico This version is not peer-reviewed

Off-Resonant Absorption Enhancement in Single Nanowires via Graded Dual-Shell Design

Version 1 : Received: 8 August 2020 / Approved: 11 August 2020 / Online: 11 August 2020 (07:53:08 CEST)
Version 2 : Received: 30 August 2020 / Approved: 31 August 2020 / Online: 31 August 2020 (08:30:22 CEST)

A peer-reviewed article of this Preprint also exists.

Liu, W.; Guo, X.; Xing, S.; Yao, H.; Wang, Y.; Bai, L.; Wang, Q.; Zhang, L.; Wu, D.; Zhang, Y.; Wang, X.; Yi, Y. Off-Resonant Absorption Enhancement in Single Nanowires via Graded Dual-Shell Design. Nanomaterials 2020, 10, 1740. Liu, W.; Guo, X.; Xing, S.; Yao, H.; Wang, Y.; Bai, L.; Wang, Q.; Zhang, L.; Wu, D.; Zhang, Y.; Wang, X.; Yi, Y. Off-Resonant Absorption Enhancement in Single Nanowires via Graded Dual-Shell Design. Nanomaterials 2020, 10, 1740.

Abstract

Single nanowires (NWs) are of great importance for optoelectronic applications, especially solar cells serving as powering nanoscale devices. However, weak off-resonant absorption can limit its light-harvesting capability. Here, we propose a single NW coated with the graded-index dual shells (DSNW). We demonstrate that with appropriate thickness and refractive index of the inner shell, the DSNW exhibits significantly enhanced light trapping compared with the bare NW (BNW), and the NW only coated with the outer shell (OSNW) and the inner shell (ISNW), which can be attributed to the optimal off-resonant absorption mode profiles due to the improved coupling between the reemitted light of the transition modes of the leak mode resonances of the Si core and the nanofocusing light from the dual shells with the graded refractive index. We found that the light absorption can be engineered via tuning the thickness and the refractive index of the inner shell, the photocurrent density is significantly enhanced by 134% (56%, 12%) in comparison with that of the BNW (OSNW, ISNW). This work advances our understanding of how to improve off-resonant absorption by applying graded dual-shell design and provides a new choice for designing high-efficiency single NW photovoltaic devices.

Supplementary and Associated Material

https://www.researchgate.net/profile/Wenfu_Liu: https://www.researchgate.net/profile/Wenfu_Liu

Keywords

single nanowires; silicon; dual shells; off-resonance; absorption; photocurrent

Subject

Chemistry and Materials Science, Nanotechnology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.