n our previous paper, we showed that the so-called quantum entanglement also exists in classical mechanics. The inability to measure this classical entanglement was rationalized with the definition of a classical observer which collapses all entanglement into distinguishable states. It was shown that evidence for this primary coherence is Newton’s third law. However, in reformulating a "classical entanglement theory" we assumed the existence of Newton’s second law as an operator form where a force operator was introduced through a Hilbert space of force states. In this paper, we derive all related physical quantities and laws from basic quantum principles. We not only define a force operator but also derive the classical mechanic's laws and prove the necessity of entanglement to obtain Newton’s third law.