Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Mechanical and Thermal Analyses of Metal-PLA Components Fabricated by Metal Material Extrusion

Version 1 : Received: 31 July 2020 / Approved: 2 August 2020 / Online: 2 August 2020 (11:50:12 CEST)

A peer-reviewed article of this Preprint also exists.

Mohammadizadeh, M.; Lu, H.; Fidan, I.; Tantawi, K.; Gupta, A.; Hasanov, S.; Zhang, Z.; Alifui-Segbaya, F.; Rennie, A. Mechanical and Thermal Analyses of Metal-PLA Components Fabricated by Metal Material Extrusion. Inventions 2020, 5, 44. Mohammadizadeh, M.; Lu, H.; Fidan, I.; Tantawi, K.; Gupta, A.; Hasanov, S.; Zhang, Z.; Alifui-Segbaya, F.; Rennie, A. Mechanical and Thermal Analyses of Metal-PLA Components Fabricated by Metal Material Extrusion. Inventions 2020, 5, 44.

Abstract

Metal additive manufacturing (AM) has gained much attentions in recent years due to its advantages including geometric freedom and design complexity, appropriate to a wide range of potential industrial applications. However, conventional metal AM methods have high-cost barriers due to the initial cost of the capital equipment, support and maintenance, etc. This study presents a unique low-cost metal material extrusion (MME) technology. The filaments used have polylactic acid (PLA) as the matrix and metal powders (copper, bronze, stainless steel, high carbon iron, and aluminum) as reinforcements. Using the proposed fabrication technology, test specimens were built by extruding polymer/metal composite filaments, which were then sintered in an open-air furnace to produce solid metallic parts. In this research, the mechanical and thermal properties of the built parts are examined using tensile tests, thermogravimetric-, thermomechanical- and microstructural analysis.

Keywords

metal additive manufacturing; sintering; tensile; mechanical analysis; metal material extrusion

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.