Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Interactions between Phytophthora cactorum, Armillaria gallica and Betula pendula Seedlings Subjected to Defoliation

Version 1 : Received: 29 July 2020 / Approved: 2 August 2020 / Online: 2 August 2020 (08:47:32 CEST)

A peer-reviewed article of this Preprint also exists.

Nowakowska, J.A.; Stocki, M.; Stocka, N.; Ślusarski, S.; Tkaczyk, M.; Caetano, J.M.; Tulik, M.; Hsiang, T.; Oszako, T. Interactions between Phytophthora cactorum, Armillaria gallica and Betula pendula Roth. Seedlings Subjected to Defoliation. Forests 2020, 11, 1107. Nowakowska, J.A.; Stocki, M.; Stocka, N.; Ślusarski, S.; Tkaczyk, M.; Caetano, J.M.; Tulik, M.; Hsiang, T.; Oszako, T. Interactions between Phytophthora cactorum, Armillaria gallica and Betula pendula Roth. Seedlings Subjected to Defoliation. Forests 2020, 11, 1107.

Journal reference: Forests 2020, 11, 1107
DOI: 10.3390/f11101107

Abstract

The purpose of this study was to better understand the interactive impact of two soil-borne pathogens, Phytophthora cactorum (as the primary pathogen) and Armillaria gallica (as secondary), on two-year-old seedlings of silver birch (Betula pendula) subjected to stress caused by mechanical defoliation simulating primary insect feeding. One year after treatments, the chlorophyll fluorescence measurement and gas chromatography coupled with mass spectrometry (GC-MS) were used to analyze the photosynthetic activity in leaves, the volatile organic compounds (VOCs) emitted by birch leaves and chemical compounds from roots. Only the infection of roots by P. cactorum increased photosynthetic rates in the leaves, which may suggest its cryptic development in contrast to fungi. The birch leaves in seedlings exposed to 50% defoliation, inoculation with P. cactorum and A. gallica emitted more aromatic carbonyls and alcohols, as well as half as much aliphatic esters, compared to untreated controls. In infected birch roots, the production of phenols, triterpenes and fatty alcohols increased, but fatty acids decreased. This was the first experimental confirmation of the pathogenicity of P. cactorum on silver birch seedlings in Poland. The most severe damage to roots took place only in the case of two-way or three-way interactions. Higher levels of aromatic carbonyls and alcohols in leaves, as well as phenolic compounds in roots of stressed birches (compared to control) suggest an activation of plant systemic acquired resistance (SAR).

Subject Areas

birch; chlorophyll; leaves’ damage; plants’ pathogens; roots; secondary metabolites

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.