Preprint
Article

The Influence of Microbial Mats on Travertine Precipitation in Active Hydrothermal Systems (Central Italy)

This version is not peer-reviewed.

Submitted:

29 July 2020

Posted:

30 July 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The study of hydrothermal travertines contributes to the understanding of the interaction between physico-chemical processes and the role played by microbial mats and biofilms in influencing carbonate precipitation. Three active travertine sites were investigated in Central Italy to identify the types of carbonate precipitates and the associated microbial mats at varying physico-chemical parameters. Carbonate precipitated fabrics at the decimetre- to millimetre-scale and microbial mats vary with decreasing water temperature: a) at high temperature (55-44°C) calcite or aragonite crystals precipitate on microbial mats of sulphide oxidizing, sulphate reducing and anoxygenic phototrophic bacteria forming filamentous streamer fabrics, b) at intermediate temperature (44-40°C), rafts, coated gas bubbles and dendrites are associated with Spirulina cyanobacteria and other filamentous and rod-shaped cyanobacteria, c) low temperature (34-33°C) laminated crusts and oncoids in a terraced slope system are associated with diverse Oscillatoriales and Nostocales filamentous cyanobacteria, sparse Spirulina and diatoms. At the microscale, carbonate precipitates are similar in the three sites consisting of prismatic calcite (40-100 µm long, 20-40 µm wide) or acicular aragonite crystals organized in radial spherulites, overlying or embedded within biofilm EPS (Extracellular Polymeric Substances). Microsparite and sparite crystal size decreases with decreasing temperature and clotted peloidal micrite dominates at temperatures < 40°C, also encrusting filamentous microbes. Carbonates are associated with gypsum and Ca-phosphate crystals; EPS elemental composition is enriched in Si, Al, Mg, Ca, P, S and authigenic aluminium-silicates form aggregates on EPS. This study confirms that microbial communities in hydrothermal travertine settings vary as a function of temperature. Carbonate precipitate types at the microscale do not vary considerably, despite different microbial communities suggesting that travertine precipitation, driven by CO2 degassing, is influenced by biofilm EPS acting as template for crystal nucleation (EPS-mediated mineralization) and affecting the fabric types, independently from specific microbial metabolism.
Keywords: 
travertine; terrestrial thermal springs; Central Italy; microbial mats; EPS-mediated mineralization
Subject: 
Environmental and Earth Sciences  -   Geophysics and Geology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

371

Views

117

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated