PreprintArticleVersion 1Preserved in Portico This version is not peer-reviewed
Performance Study of Integrated Solar-Water Supply System for Isolated Agricultural Areas in Thailand: Two Case-Study Villages of The Royal Initiative Project
Imjai, T.; Thinsurat, K.; Ditthakit, P.; Wipulanusat, W.; Setkit, M.; Garcia, R. Performance Study of an Integrated Solar Water Supply System for Isolated Agricultural Areas in Thailand: A Case-study of the Royal Initiative Project. Water2020, 12, 2438.
Imjai, T.; Thinsurat, K.; Ditthakit, P.; Wipulanusat, W.; Setkit, M.; Garcia, R. Performance Study of an Integrated Solar Water Supply System for Isolated Agricultural Areas in Thailand: A Case-study of the Royal Initiative Project. Water 2020, 12, 2438.
Imjai, T.; Thinsurat, K.; Ditthakit, P.; Wipulanusat, W.; Setkit, M.; Garcia, R. Performance Study of an Integrated Solar Water Supply System for Isolated Agricultural Areas in Thailand: A Case-study of the Royal Initiative Project. Water2020, 12, 2438.
Imjai, T.; Thinsurat, K.; Ditthakit, P.; Wipulanusat, W.; Setkit, M.; Garcia, R. Performance Study of an Integrated Solar Water Supply System for Isolated Agricultural Areas in Thailand: A Case-study of the Royal Initiative Project. Water 2020, 12, 2438.
Abstract
This article presents a field-performance investigation on an Integrated Solar Water Supply System (SWSS) at two isolated agricultural areas in Thailand. The two case-study villages (Pongluek and Bangkloy ) have experienced severe draughts in the last decades, and therefore water supply has become a major issue. A stand-alone 15.36 kW solar power and a 15 kW solar submersible pump were installed along with the input power generated by solar panels supported by four solar trackers. The aim is to lift water at the static head of 64 and 48 m via piping length of 400 metres for each village to be stored in 1,000 m3 and 1,800 m3 reservoirs at an average of 300 m3 and 400 m3 per day, respectively for Pongluek and Bangkloy villages. The case study results have shown that the real costs of electricity generated by SWSS using solar PV systems intergraded with the solar tracking system yield better performance and are more advantageous compared with the non-tracking system. This study illustrates how system integration has been employed. System design and commercially available simulation predictions are elaborated. Construction, installation, and field tests for SWSS are discussed and highlighted. Performances of the SWSS in different weather conditions such as sunny, cloudy, and rainy days were analysed to make valuable suggestions for higher efficiency of the integrated solar water supply systems.
Keywords
water resource management; solar-water; solar-water supply system; SWSS; decision support; solar pumping; climate change; royal initiative project
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.