Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Non-Invasive PPG-Based System for Continuous Heart Rate Monitoring of Incubated Avian Embryo

Version 1 : Received: 26 July 2020 / Approved: 26 July 2020 / Online: 26 July 2020 (17:50:12 CEST)

A peer-reviewed article of this Preprint also exists.

Youssef, A.; Berckmans, D.; Norton, T. Non-Invasive PPG-Based System for Continuous Heart Rate Monitoring of Incubated Avian Embryo. Sensors 2020, 20, 4560. Youssef, A.; Berckmans, D.; Norton, T. Non-Invasive PPG-Based System for Continuous Heart Rate Monitoring of Incubated Avian Embryo. Sensors 2020, 20, 4560.

Abstract

The chicken embryo is a widely used experimental animal-model in many studies such as developmental biology and to study the physiological responses and adaptation to altered environments as well as for cancer and neurobiology research. Embryonic heart rate is an important physiological variable useful as an index reflecting the embryo's natural activity and is considered one of the most difficult parameters to measure. An acceptable measurement technique of embryonic heart rate should provide a reliable cardiac signal quality while maintaining adequate gas exchange through the eggshell along the incubation and embryonic developmental period. In this paper, we presented a detailed design and methodology for a non-invasive PPG-based prototype (Egg-PPG) for real-time and continuous monitoring of embryonic heart rate during incubation. An automatic embryonic cardiac wave detection algorithm, based on normalised spectral entropy, is described. The developed algorithm successfully estimated the embryonic heart rate with 98.7% accuracy. We believe that the developed overall system presented in this paper is showing a promising solution for non-invasion, real-time monitoring of embryonic cardiac signal, which can be used in both experimental studies (e.g., developmental embryology and cardiovascular research) and in industrial incubation applications.

Keywords

Embryonic Heart Rate; Photoplethysmography (PPG); Continuous Wavelet Transform (CWT); Spectral Entropy

Subject

Engineering, Bioengineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.