Preprint
Article

This version is not peer-reviewed.

Recognition and Repetition Counting for LME Exercises in Exercise-Based CVD Rehabilitation: A Comparative Study Using Artificial Intelligence Models

A peer-reviewed article of this preprint also exists.

Submitted:

25 July 2020

Posted:

26 July 2020

You are already at the latest version

Abstract
Exercise-based cardiac rehabilitation requires patients to perform a set of certain prescribed exercises a specific number of times. Local muscular endurance (LME) exercises are an important part of the rehabilitation program. Automatic exercise recognition and repetition counting, from wearable sensor data is an important technology to enable patients to perform exercises independently in remote settings, e.g. their own home. In this paper we first report on a comparison of traditional approaches to exercise recognition and repetition counting, corresponding to supervised machine learning and peak detection from inertial sensing signals respectively, with more recent machine learning approaches, specifically Convolutional Neural Networks (CNNs). We investigated two different types of CNN: one using the AlexNet architecture, the other using time-series array. We found that the performance of CNN based approaches were better than the traditional approaches. For exercise recognition task, we found that the AlexNet based single CNN model outperformed other methods with an overall 97.18% F1-score measure. For exercise repetition counting , again the AlexNet architecture based single CNN model outperformed other methods by correctly counting repetitions in 90% of the performed exercise sets within an error of ±1. To the best of our knowledge, our approach of using a single CNN method for both recognition and repetition counting is novel. In addition to reporting our findings, we also make the dataset we created, the INSIGHT-LME dataset, publicly available to encourage further research.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated