Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Deep Learning Based Feature Silencing for Accurate Concrete Crack Detection

Version 1 : Received: 20 July 2020 / Approved: 21 July 2020 / Online: 21 July 2020 (13:54:13 CEST)

A peer-reviewed article of this Preprint also exists.

Billah, U.H.; La, H.M.; Tavakkoli, A. Deep Learning-Based Feature Silencing for Accurate Concrete Crack Detection. Sensors 2020, 20, 4403. Billah, U.H.; La, H.M.; Tavakkoli, A. Deep Learning-Based Feature Silencing for Accurate Concrete Crack Detection. Sensors 2020, 20, 4403.

Abstract

An autonomous concrete crack inspection system is necessary for preventing hazardous incidents arising from deteriorated concrete surfaces. In this paper, we represent a concrete crack detection framework to aid the process of automated inspection. The proposed approach employs a deep convolutional neural network architecture for crack segmentation from concrete image. The proposed network alleviates the effect of gradient vanishing problem present in deep neural network architectures. A feature silencing module is incorporated in the crack detection framework, for eliminating unnecessary feature maps from the network. The overall performance of the network significantly improves as a result. Experimental results support the benefit of incorporating feature silencing within a convolutional neural network architecture for improving the network’s robustness, sensitivity, and specificity. An added benefit of the proposed architecture is its ability to accommodate for the trade-off between specificity (positive class detection accuracy) and sensitivity (negative class detection accuracy) with respect to the target application. Furthermore, the proposed framework achieves a high precision rate and processing time than crack detection architectures present in literature.

Keywords

Convolutional Neural Network; Encoder-Decoder Architecture; Semantic Segmentation; Feature Silencing; Crack Detection

Subject

Computer Science and Mathematics, Artificial Intelligence and Machine Learning

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.