Preprint
Article

Quantized Constant-Q Gabor Atoms for Sparse Binary Representations of Cyber-Physical Signatures

This version is not peer-reviewed.

Submitted:

25 August 2020

Posted:

25 August 2020

Read the latest preprint version here

A peer-reviewed article of this preprint also exists.

Abstract
Data acquisition by uncalibrated, heterogeneous digital sensor systems such as smartphones present emerging signal processing challenges. Binary metrics are proposed for the quantification of cyber-physical signal characteristics and features, and a highly standardized constant-Q variation of the Gabor atom is developed for use with wavelet transforms. Two different CWT reconstruction schemas are presented and tested under different SNR conditions. A sparse representation of the Nth order Gabor atoms worked well against a test blast synthetic using the wavelet entropy and a comparable entropy-like parametrization of the SNR as the CWT coefficient-weighting functions. The proposed methods should be well suited for dictionary-based machine learning.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

668

Views

549

Comments

1

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated