Preprint Article Version 1 This version is not peer-reviewed

Assessing Options for Remediation of Contaminated Mine Site Drainage Entering the River Teign, Southwest England

Version 1 : Received: 10 July 2020 / Approved: 11 July 2020 / Online: 11 July 2020 (09:36:40 CEST)

How to cite: Jordan, A.; Hill, R.; Turner, A.; Roberts, T.; Comber, S. Assessing Options for Remediation of Contaminated Mine Site Drainage Entering the River Teign, Southwest England. Preprints 2020, 2020070236 (doi: 10.20944/preprints202007.0236.v1). Jordan, A.; Hill, R.; Turner, A.; Roberts, T.; Comber, S. Assessing Options for Remediation of Contaminated Mine Site Drainage Entering the River Teign, Southwest England. Preprints 2020, 2020070236 (doi: 10.20944/preprints202007.0236.v1).

Abstract

The river Teign in Devon has come under scrutiny for failing to meet Environmental Quality Standards for ecotoxic metals due to past mining operations. A disused mine known as Bridford Barytes mine, has been found to contribute a significant source of Zn, Cd and Pb to the river. Recently, studies have been focused on the remediation of such mine sites using low-cost treatment methods to help reduce metal loads to the river downstream. Red mud is a waste product from the aluminium industry, the utilization of this resource has proven an attractive low-cost treatment method for adsorbing toxic metals. Adsorption kinetics and capacity experiments reveal metal removal efficiencies of up to 70% within the first 2 hours when red mud is applied in pelletized form. Biochar is another effective adsorbent with the potential to remove >90% Zn using agricultural feedstock. Compliance of the Teign has been investigated by analysing dissolved metal concentrations and bioavailable fractions of Zn to assess if levels are of environmental concern. By applying a Real-World Application Model, this study reveals that compressed pellets and agricultural biochar offer an effective, low-cost option to reducing metal concentrations and thus improving the quality of the river Teign.

Subject Areas

trace metals; mine drainage remediation; zinc; red media; biochar

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.