Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Assessing Options for Remediation of Contaminated Mine Site Drainage Entering the River Teign, Southwest England

Version 1 : Received: 10 July 2020 / Approved: 11 July 2020 / Online: 11 July 2020 (09:36:40 CEST)

A peer-reviewed article of this Preprint also exists.

Jordan, A.; Hill, R.; Turner, A.; Roberts, T.; Comber, S. Assessing Options for Remediation of Contaminated Mine Site Drainage Entering the River Teign, Southwest England. Minerals 2020, 10, 721. Jordan, A.; Hill, R.; Turner, A.; Roberts, T.; Comber, S. Assessing Options for Remediation of Contaminated Mine Site Drainage Entering the River Teign, Southwest England. Minerals 2020, 10, 721.

Abstract

The river Teign in Devon has come under scrutiny for failing to meet Environmental Quality Standards for ecotoxic metals due to past mining operations. A disused mine known as Bridford Barytes mine, has been found to contribute a significant source of Zn, Cd and Pb to the river. Recently, studies have been focused on the remediation of such mine sites using low-cost treatment methods to help reduce metal loads to the river downstream. Red mud is a waste product from the aluminium industry, the utilization of this resource has proven an attractive low-cost treatment method for adsorbing toxic metals. Adsorption kinetics and capacity experiments reveal metal removal efficiencies of up to 70% within the first 2 hours when red mud is applied in pelletized form. Biochar is another effective adsorbent with the potential to remove >90% Zn using agricultural feedstock. Compliance of the Teign has been investigated by analysing dissolved metal concentrations and bioavailable fractions of Zn to assess if levels are of environmental concern. By applying a Real-World Application Model, this study reveals that compressed pellets and agricultural biochar offer an effective, low-cost option to reducing metal concentrations and thus improving the quality of the river Teign.

Keywords

trace metals; mine drainage remediation; zinc; red media; biochar

Subject

Environmental and Earth Sciences, Pollution

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.