Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

All-$t_{2g}$ Electronic Orbital Reconstruction of Monoclinic MoO$_2$ Battery Material

Version 1 : Received: 3 July 2020 / Approved: 5 July 2020 / Online: 5 July 2020 (12:50:22 CEST)

A peer-reviewed article of this Preprint also exists.

Craco, L.; Leoni, S. All-t2g Electronic Orbital Reconstruction of Monoclinic MoO2 Battery Material. Appl. Sci. 2020, 10, 5730. Craco, L.; Leoni, S. All-t2g Electronic Orbital Reconstruction of Monoclinic MoO2 Battery Material. Appl. Sci. 2020, 10, 5730.

Abstract

Motivated by experiments, we undertake an investigation of electronic structure reconstruction and its link to electrodynamic responses of monoclinic MoO$_2$. Using a combination of LDA band structure with DMFT for the subspace defined by the physically most relevant Mo $4d$-bands, we unearth the importance of multi-orbital electron interactions to MoO$_2$ parent compound. Supported by a microscopic description of quantum capacity we identify the implications of many-particle orbital reconstruction to understanding and evaluating voltage-capacity profiles intrinsic to MoO$_2$ battery material. Therein, we underline the importance of the dielectric function and optical conductivity in the characterisation of existing and candidate battery materials.

Keywords

Correlated Materials; Battery Materials; DMFT; DFT; MoO2

Subject

Physical Sciences, Condensed Matter Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.