Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Cosmology with Variable G and Nonlinear Electrodynamics

Version 1 : Received: 1 July 2020 / Approved: 2 July 2020 / Online: 2 July 2020 (12:56:22 CEST)
Version 2 : Received: 7 July 2020 / Approved: 9 July 2020 / Online: 9 July 2020 (16:02:47 CEST)
Version 3 : Received: 13 April 2021 / Approved: 14 April 2021 / Online: 14 April 2021 (14:07:07 CEST)

A peer-reviewed article of this Preprint also exists.

Indian J Phys (2021) Indian J Phys (2021)

Journal reference: Indian Journal of Physics 2021
DOI: 10.1007/s12648-021-02110-4


In a bid to resolve lingering problems in cosmology, more focus is being tilted towards cosmological models in which physical constants of nature are not necessarily real constants, but varying with cosmic time. In this paper we study cosmology in nonlinear electrodynamics with the Newton's gravitational constant $G$ not a constant but varies with the scale factor of the universe. The evolution of the scale factor $a(t)$ in this model depends on $\alpha$, which gives an steady universe when $\alpha=0.5$. As $\alpha$ increases to $\alpha=1.0, 1.5, 2.0, 3.0$ the universe enter into inflation scenario after that the magnetic monopole field decayed and is converted to radiation. We checked the stability of the model and obtained that it is classically stable with the best condition for the stability at $5/2\geq \alpha >7/4$ .


Cosmology; nonlinear electrodynamics; inflation; acceleration of the universe; causality; classical stability; variable $G$


PHYSICAL SCIENCES, General & Theoretical Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0

Notify me about updates to this article or when a peer-reviewed version is published.

We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.