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In a bid to resolve lingering problems in cosmology, more focus is being tilted towards cosmological
models in which physical constants of nature are not necessarily real constants, but varying with
cosmic time. In this paper we study cosmology in nonlinear electrodynamics with the Newton’s
gravitational constant G not a constant but varies with the scale factor of the universe. The evolution
of the scale factor a(t) in this model depends on α, which gives an steady universe when α = 0.5. As
α increases to α = 1.0, 1.5, 2.0, 3.0 the universe enter into inflation scenario after that the magnetic
monopole field decayed and is converted to radiation. We checked the stability of the model and
obtained that it is classically stable with the best condition for the stability at 5/2 ≥ α > 7/4 .
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I. INTRODUCTION

Remarkable achievements gained in the field of cos-
mology over the last decades is attributed to observed
Cosmic Microwave Background (CMB) radiation and
type-Ia supernovae observations which suggest that
cosmic expansion is accelerating [1]. According to
the standard cosmological model, the universe evolved
from an initial singularity – which is a breakdown in
the geometrical structure of space and time. Singulari-
ties are always constraints in physics and indeed in cos-
mology when describing the early universe. To deal
with this and other fundamental problems in modern
cosmology such as the horizon problem, flatness prob-
lem, monopole problem and inflation. Magnetic uni-
verse models which portray no initial singularity due to
strong electromagnetic field in the modified Nonlinear
Electrodynamics (NED) can explain the cosmic inflation
period of the universe which is a theory of exponential
expansion of space in the early universe [2–18]. Other
models such as non-minimal coupling, varying speed
of light (VSL), quantum gravity effect, Lagrange with
quadratic term, inflation by scalar fields, NED without
modification of general relativity have been introduced
in the literature to solve the puzzle of cosmology and
mystery of inflation [19–40].

Max Born and Leopold Infeld used the idea of Gus-
tav who in 1909 had attempted to construct a purely
electromagnetic theory of charge particles to proposed a
new theory in 1934, fully relativistic and gauge invariant
nonlinear electrodynamics [41]. Born-Infeld proposed
a nonlinear Lagrange with an interesting attribute of
changing from to Maxwell’s theory for low electromag-
netic fields. Since there are no new degrees of freedom
such as scalar fields or branes, opines that works of cos-
mology described by NED should have some interesting

∗ gabrielwjoseph@gmail.com
† ali.ovgun@emu.edu.tr; https://www.aovgun.com

features of cosmic importance. The sources of cosmic
inflation can be trace to nonlinear electromagnetic radi-
ation which is explained by modified Maxwell’s equa-
tions. When coupled with gravitational field, NED may
give negative pressure and also can lead to cosmic infla-
tion [22]. The evolution of the universe when explored
with a new NED model such that electromagnetic field
coupled to gravitational field prevents cosmic singular-
ity at the big bang. The electromagnetic and gravita-
tional fields were very strong during the evolution of
the early universe, thereby leading a quantum correc-
tion and giving birth to NED [23–25].

In recent times, interest is geared towards cosmolog-
ical models in which physical constants of nature are
varying with time [42–44]. For instance, in the VSL
theory, most pending problems of standard cosmologi-
cal models are being resolved with considering inflation
[45–47]. In the Einstein’s field equation, the Newton’s
gravitational constant G acts as a coupling constant be-
tween geometry of spacetime and matter. It is noted that
there are significant evidence that gravitational constant
G can be varying in a time [48]. Spurred by the discov-
ery of occurrence of large numbers Weyl and Dirac pro-
posed the theory of variable G. In other to unify gravi-
tation and elementary particle Physics, Einstein’s theory
with time varying G is already in the literature [46, 49–
59].

Our main aims is to use the model of nonlinear elec-
tromagnetic field with a simple Lagrange density and
the Newton’s gravitational constantG that varying with
the scale factor to study the evolution of the universe
and other quantities of cosmic inflation.

The structure of the paper is thus: In section II, we
briefly introduced the cosmology of a universe filled
with nonlinear magnetic monopole field. In section III,
we obtain the evolution of the universe filled with non-
linear magnetic monopole field and variable gravita-
tional constant. In section IV, we checked the stability
of the model and give our conclusion.
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II. NON-LINEAR MAGNETIC MONOPOLE FIELDS
AND COSMOLOGY

In nonlinear electrodynamics, we define the La-
grangian density by [10]

LNED = −F
α

4
, (1)

F denotes an invariant quantity known as the Maxwell
invariant . Because the matter Lagrange is independent
of the metric’s derivatives, in tensorial language the
matter energy-momentum defination using (1) is given
as [12]

Tµν = −KµλF
λ
ν + gµνLNED, (2)

with

Kµλ =
∂LNED
∂F

Fµλ. (3)

Here, it is assumed that on the cosmic Background,
there exist a dominant stochastic magnetic field whose
wavelengths are less than the curvature. Hence, the
mean electromagnetic fields now become the source of
Einstein equations [60]. The averaged electromagnetic
fields are given as [2]:

〈E〉 = 〈B〉 = 0, 〈EiBj〉 = 0, (4)

〈EiEj〉 =
1

3
E2gij , 〈BiBj〉 =

1

3
B2gij ,

where 〈 〉 denotes averaging brackets used for taking
mean of volume. The wavelength of radiation is con-
sidered to be lower than the volume and the volume
smaller than the curvature.

However, the case of real nonlinear magnetic
monopole is when E2 = 0. Therefore, as obtained from
equation (1), the energy density ρ = −T 0

0 and the pres-
sure p = T ii/3 of the nonlinear monopole magnetic field
is [5]

ρNED = −LNED, (5)

pNED = LNED −
2B2

3

∂LNED
∂F

, (6)

where LNED is defined in Eq. (1) with F = B2/2.

From the above equations, we obtained the energy
density equation ρ and pressure p as thus:

ρ = ρNED = 2−α(B2)α

4

p = pNED = 2−α

12 (B2)α (4α− 3)
(7)

III. COSMOLOGY WITH VARIABLE G AND
NONLINEAR ELECTRODYNAMICS

In varying G theories, the action is still

S =

∫
dx4

(√
−g
(

R

16πG
+ LNED

))
(8)

Taking the variation of the action with respect to the
metric and ignoring surface terms leads to

Gµν − gµνΛ =
8πG

c4
Tµν . (9)

In a cosmological context, the Friedmann Robertson
Walker metric for variable speed of light c and the New-
tonian gravitational constant G can be written as

ds2 = −c2dt2 + a(t)2
[

dr2

1−Kr2
+ r2dΩ

]
, (10)

where a(t) is the scale factor, t the comoving time and
K = 0, 1,−1 represent a flat, closed and open FRW uni-
verse, respectively.

For the case of flat FRW (K = 0) and c = 1, the Ein-
stein’s equations are,

H2 =

(
ȧ

a

)2

=
8πG(t)

3
ρ (11)

ä

a
= −4πG(t)

3
(ρ+ 3p). (12)

Where H represents the Hubble parameter and dot is
the differentiation with respect to time.

However, the conservation equation that follows from
(11)-(12) is for time variation in G(t) is now [42, 43]:

ρ̇+ 3
ȧ

a
(ρ+ p) = −ρĠ

G
. (13)

the above conservation equation can be written in this
forms:

ρ̇+ 3
ȧ

a
(ρ+ p) + ρ

Ġ

G
= 0, (14)

where the equation of state parameter is ω = p
ρ denotes

the equation of state parameter for the dark energy. [51]
gives the speed of light c and the gravitational constant
G in form of the power-low of the scale factor as:

G = G0a
m. (15)

where G0 is a positive constant. Since we know that G
increases with time, m must be positive.
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From the conservation equation (13) we obtain

− ∂LNED
2∂F

·
(

d

dt
((B(t))2) + 4

B(t)2ȧ

a

)
− LNEDĠ

G
= 0.

(16)
The solution of the above equation gives an important
relation beteen B(t) and a(t) as.

B(t) = a(t)−1/2
4 α+m
α B0. (17)

Conviniently written in terms of the scale factor, the evo-
lution of energy density and pressure is given by:

ρ =
2−α

4

(
B0

2a(t)
−4 α−m

α

)α
, (18)

p =
2−α

12

(
B0

2a(t)
−4 α−m

α

)α
(4α− 3) . (19)

Then we have

ρ+ p =
2−α

3

(
B0

2a(t)
−4 α−m

α

)α
α, (20)

ρ+ 3p = 2−1−α
(
B0

2a(t)
−4 α−m

α

)α
(2α− 1) , (21)

and the EoS parameter ω is

ω =
4

3
α− 1. (22)

It follows from Eq. (22) that at α = 0, ω = −1 for de Sit-
ter spacetime and at α = 1, ω = 1/3 for ultra-relativistic
case. The matter content of the universe is related to its
acceleration via Einstein by:

ä

a
= −4πG(t)

3
(ρ+ 3p). (23)

To check the singularity on energy density and pressure
at a(t)→ 0 and a(t)→∞, we finds that,

lim
a(t)→0

ρ(t) = lim
a(t)→0

p(t) = 0, (24)

lim
a(t)→∞

ρ(t) = lim
a(t)→∞

p(t) = 0. (25)

By using the Einstein’s field equation and energy mo-
mentum tensor, the Ricci Scalar R which gives the cur-
vature of spacetime is calculated

R = 8πG0 a(t)m(ρ− 3p). (26)

The Ricci tensor squared RµνR
µνand the Kretschmann

scalar RµναβRµναβ are also obtained as

RµνR
µν = (8πG0 a(t)m)2(ρ2 + 3p2), (27)

RµναβR
µναβ = (8πG0 a(t)m)2

(
5

3
ρ2 + 2ρp+ 3p2

)
.

(28)

lim
a(t)→0

R(t) = lim
a(t)→0

RµνR
µν = lim

a(t)→0
RµναβR

µναβ = 0,

(29)
The nature of the scale factor gives the behaviour of the
curvature scalar. By taking of the above equations as
the universe accelerates at a(t) → 0, we obtained no
singularities in the curvature scalar, Ricci tensor and the
Kretschmann scalar.

IV. THE EVOLUTION OF THE SCALE FACTOR OF THE
UNIVERSE

The first Friedmann equation with variable G(t) for
the flat universe is given by

H2 =

(
ȧ

a

)2

=
8πG(t)

3
ρ. (30)

When a particle moves in one dimension in a potential
V (a), the equation of motion is

ȧ2 + V (a) = 0 (31)

The potential function

V (a) = −1/3 21−απ G0 (a(t))m+2
(
B2

0(a(t))
−4 α−m

α

)α
(32)

is negative and possesses a maximum at a = ac = −C1.
Using the (15) and (5), it becomes

−21−απ G0 a
−4 α+2B2 α

0 + 3 ȧ2

3a2
= 0, (33)

then we find the scale factor a(t) is equal to

a(t) ≈ 1/2
√
B023/423/4 α

−1 (
G0 α

2(C2 − t)2
)1/4 α−1

(34)

3−1/4 α
−1

π1/4 α−1

.

When α = 1 and t = −t0, we obtained that a(t) ≈√
(t), this depicts radiation dominated universe [62]. In

the early universe, there is a de Sitter phase because of
the nonlinear corrections to Maxwells theory. Thus, the
model describes inflation at the early epoch as shown in
Fig. 1. Moreover, Fig. 1 shows the universe evolves from
big bang and is expanding with accelerating expansion.
The case in which α = 0.5 indicates an empty universe
and increasing the value of α, the universe inflationary
epoch is visible.

Introducing the quantity q (the deceleration parame-
ter) [62], we described the expansion of the universe by:

q = − äa

(ȧ)2
= 9/2

ρ+ 3 p

aρ
. (35)
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FIG. 1: Plot of the scale factor a versus the time t (for
B0 = G0 = C2 = m = 1).

Note that q = 0 at α = 1
2 shown in Fig. 2. There is

a inflation phase for q < 0 and deceleration phase for
q > 0.

The deceleration parameter represents a two flips. In
the first case for α > 0.5, the universe transits from
the inflationary to decelerated stage. In the second case
for α ≤ 0.3, the universe switches from the decelerated
stage to the current accelerating phase.

To estimate the amount of the inflation, we use the
definition of e-foldings

N = ln
a(tend)

a(tin)
(36)

where tend is the time inflation ends while tin is the time
it begins. For N ' 70 e-folding, the cosmic flatness and
horizon problems can be resolved. Hence, we obtained
the scale factor for beginning time of inflation (for m =
1, α = 1, G0 = 1, B0 = 1)

a(tin) = 3.46x10−31. (37)

Using the second Friedmann equation Eq. (23) which
is known as the acceleration equation for the universe,

FIG. 2: Plot of the deceleration parameter q versus the
scale factor a (for B0 = G0 = C2 = m = 1).

we plotted the Fig. 3.

ä

a
=

(1− 2α)

4α2t2
. (38)

It is clear that acceleration stops at α = 0.5.

V. CONCLUSION

For any cosmological model to survive, it is an estab-
lished fact that the speed of sound do not exit the local
speed of light, cs ≤ 1. The second veracity that ensures
stability requires that the square of the speed of sound
is positive, i.e c2s > 0 . In case, the model is a classically
stable one [61]. At E = 0, we obtained:

c2s =
dp

dρ
=
dp/dF
dρ/dF

= −7

3
+

4

3
α (39)
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A requirement of the classical stability c2s > 0 is α > 7
4

and the causality cs ≤ 1 is α ≤ 5
2 . Hence, the best value

of α for both stability conditions are 5
2 ≥ α >

7
4 .

In this work we have studied cosmology with vary-
ing gravitational constant G and Nonlinear Electrody-
namics in a flat FRW universe. Under change of scale
factor, the evolution of magnetic field reduced to B(t) =

a(t)−1/2B0 as obtained in [12] when m = 0. The evolu-
tion of the scale factor shows that the models gives an
accelerating expanding universe with

a(t) ≈ 1/2
√
B023/423/4 α

−1 (
G0 α

2(C2 − t)2
)1/4 α−1

(40)

3−1/4 α
−1

π1/4 α−1

.

, where B0 represents the magnetic induction field at
present time t0 and β a free parameter presented in Fig.
1. When α = 1 and t = −t0, we obtained that a(t) ≈√

(t), this depicts radiation dominated universe [62].
Also as observed in the equations (24), (25), and (29),
we obtained no singularity in the energy density, pres-
sure and curvature terms respectively. Furthermore, we
also studied the stability of the this model and observed
that that it depends of the constant α and that it is clas-
sically stable. In future study, we will like to study the
evolution of the universe with both varying G and c, in
nonlinear electrodynamics.
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