Preprint
Article

Isolation of Skeletal Muscle-derived Cells Modeling Neural Crest-Derived Stem Cells for Therapeutic Use in Regenerative Periodontology

Submitted:

01 November 2020

Posted:

02 November 2020

You are already at the latest version

Abstract
Periodontitis is microbial infection affecting periodontium, the tooth supporting structure and affects >743 million people worldwide. Neural crest-derived stem cells (NCSCs) hold the promise to regenerate the damaged periodontium. These cells have been identified within adult adipose tissue, periodontal ligament, and palatal tissue. Typical enzymatic isolation protocols are expensive, time consuming and often not clinically compliant. Enzyme-free, mechanical dissociation has been suggested as an alternative method of generating cell suspensions required for cell separation and subsequent expansion ex vivo. In our study, samples of rat skeletal muscle tissue were used to appraise the suitability of a novel mincing method of mechanical dissociation against enzymatic digestion with collagenase and dispase. Skeletal muscle is readily available and has been shown to contain NCSC populations. We used a Rigenera-Human Brain Wave® prototype mincer to produce a suspension of skeletal muscle-derived cells modeling NCSCs. We have compared the resulting cell cultures produced via mechanical dissociation and enzymatic dissociation, producing single cell suspensions suitable for Magnetic Cell Sorting (MACs) and Fluorescence-activated cell sorting (FACS). Despite the Countess Automated Cytometry data demonstrating that cell suspensions produced by mechanical dissociation (n=24) contain on average 26.8 times as many viable cells as enzymatic cell suspensions (n=18), enzymatic suspensions produced more successful cell cultures. Spheroids and subsequently adherent cells formed from 4 enzymatic cell suspensions (44.4%) vs. 1 mechanical cell suspension (8.3%). Enzymatic digestion protocols formed spheroids faster and more plentifully than mechanical cell suspensions. Adherent cells and spheroids isolated via both methods appear morphologically similarly to NCSCs from our previous studies.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

619

Views

464

Comments

1

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated