Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Assessment of Mechanical Properties of Corroded Prestressing Strands

Version 1 : Received: 19 May 2020 / Approved: 20 May 2020 / Online: 20 May 2020 (10:00:30 CEST)

A peer-reviewed article of this Preprint also exists.

Jeon, C.-H.; Nguyen, C.D.; Shim, C.-S. Assessment of Mechanical Properties of Corroded Prestressing Strands. Appl. Sci. 2020, 10, 4055. Jeon, C.-H.; Nguyen, C.D.; Shim, C.-S. Assessment of Mechanical Properties of Corroded Prestressing Strands. Appl. Sci. 2020, 10, 4055.

Abstract

The corrosion of prestressing steel in prestressed concrete bridges is a critical issue for bridge maintenance. To assess structures with corroded strands, it is necessary to define the mechanical properties of the strands and their influence on the structural behavior. In this study, corroded strands are taken from external tendons in existing bridges and tested to define the effects of corrosion on the tensile properties of the strand. Empirical equations for the tensile strength and ductility of the corroded strand are proposed using test results. The most corroded wire governs the mechanical properties of the strand. Experiments on prestressed concrete beams with a single corroded strand are conducted to investigate the structural behavior. A reduction in the flexural strength and maximum deformation is observed from the experiment. According to the section loss of a wire in a strand and its location in a beam, the flexural capacity can be evaluated using the proposed equation. The reduced ultimate strain of the corroded strand can be the governing factor of the flexural strength.

Keywords

corrosion; prestressed concrete bridge; prestressing steel; section loss; strength; ductility

Subject

Engineering, Civil Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.