Preprint
Article

Thermal Decomposition Behavior of 3D Printing Filaments Made of Wood-filled Polylactic Acid (PLA)/Starch Blend

Submitted:

03 May 2020

Posted:

05 May 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Dynamic thermogravimetric (TG) analysis under nitrogen environment was used to understand the thermal decomposition process of 3D printing filaments made of wood-filled polylactic acid (PLA)/starch blend. The characteristic temperatures and apparent activation energy (AAE) of the filaments with various starch contents were calculated with well-known kinetic models by Friedman, Flynn-Wall-Ozawa, Coats-Redfern and Kissinger. With the increased starch content in the filament, the onset thermal decomposition temperatures of the filaments decreased gradually from 272.4 to 155.1°C. The thermal degradation degree became smaller, and the transitional temperature interval became larger with increased starch proportion. The AAE values of the three types of filaments with different starch ratios varied between 97 kJ/mol and 114 kJ/mol, depending on material composition and method of calculation. The improved understanding of thermal decomposition behavior of PLA-starch-wood composites can help develop more biodegradable PLA/starch-based filaments for 3D printing.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

731

Views

236

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated