Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Gravity as the Hidden Variable of Quantum Mechanics: Information-Matter Equation from Gravity

Version 1 : Received: 19 April 2020 / Approved: 20 April 2020 / Online: 20 April 2020 (15:53:06 CEST)
Version 2 : Received: 21 April 2020 / Approved: 22 April 2020 / Online: 22 April 2020 (06:12:30 CEST)
Version 3 : Received: 23 April 2020 / Approved: 23 April 2020 / Online: 23 April 2020 (05:09:24 CEST)
Version 4 : Received: 24 April 2020 / Approved: 25 April 2020 / Online: 25 April 2020 (16:14:02 CEST)
Version 5 : Received: 25 April 2020 / Approved: 26 April 2020 / Online: 26 April 2020 (02:50:20 CEST)
Version 6 : Received: 29 April 2020 / Approved: 30 April 2020 / Online: 30 April 2020 (05:14:21 CEST)
Version 7 : Received: 30 April 2020 / Approved: 2 May 2020 / Online: 2 May 2020 (16:47:51 CEST)
Version 8 : Received: 6 May 2020 / Approved: 6 May 2020 / Online: 6 May 2020 (15:43:39 CEST)

How to cite: Farag Ali, A. Gravity as the Hidden Variable of Quantum Mechanics: Information-Matter Equation from Gravity. Preprints 2020, 2020040368 (doi: 10.20944/preprints202004.0368.v1). Farag Ali, A. Gravity as the Hidden Variable of Quantum Mechanics: Information-Matter Equation from Gravity. Preprints 2020, 2020040368 (doi: 10.20944/preprints202004.0368.v1).

Abstract

I localize gravity to match its measurements with the local inertial frame of special relativity. I find a geometric interpretation of the speed of light and mass. I find also the relation between every mass measured and the black hole entropy which introduce information-matter equation from gravity. Through localization of gravity, a timeless state of the universe emerges and the uncertainty principle does not hold since the velocity concept is replaced by distance. This would resolve the problem of time because timeless state of the universe emerges naturally and mathematically consistent. This would suggest that gravity form the hidden one variable of quantum mechanics which would complete the relation between quantum mechanics and gravity. We introduce also a principle of least computation which is achieved when the ratio equal to the difference in the process of local gravitational measurements.

Subject Areas

gravity; hidden variables; information loss problem; completeness

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.