Preprint
Communication

A New Radio-Frequency Acoustic Method for Remote Study of Liquids

This version is not peer-reviewed.

Submitted:

24 March 2020

Posted:

26 March 2020

Read the latest preprint version here

A peer-reviewed article of this preprint also exists.

Abstract
In the present work a new method of study of liquids has been proposed. It is based on phenomenon of radio frequency anisotropy of electrolyte solution discovered by us. It arises because of mechanical or acoustic excitation of the solution. We were observing the phenomenon during the development process of RF polarimetric contactless cardiograhpy. The electric field vector of transmitted 433.82 MHz signal becomes rotated after its transition through the pericardial region. That rotation depends on change of blood acceleration when passing through the chambers of the heart and large vessels. It has also been revealed that rotation occurs after RF wave passage through the physiological saline (0.9% NaCl) subjected to any mechanical excitation inside it like a jet appearing or soundwave passing. No significant difference was detected experimentally between NaCl and KCl solutions behaviour. It means that the mechanism of hydrodynamic separation of ions is apparently not suitable to explain the phenomenon. The response we have registered most likely resembles the magnetization process of spin glasses. From the nature of the response observed we have concluded that a fundamentally new physical effect is discovered. It may provide wide opportunities for remote measurement of the electrolyte solutions parameters using polarized radio-frequency signals.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

536

Views

1270

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated