Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Transient Thermo-mechanical Analysis of Steel Ladle Refractory Linings Using Mechanical Homogenization Approach

Version 1 : Received: 18 March 2020 / Approved: 20 March 2020 / Online: 20 March 2020 (04:56:11 CET)

A peer-reviewed article of this Preprint also exists.

Ali, M.; Sayet, T.; Gasser, A.; Blond, E. Transient Thermo-Mechanical Analysis of Steel Ladle Refractory Linings Using Mechanical Homogenization Approach. Ceramics 2020, 3, 171-189. Ali, M.; Sayet, T.; Gasser, A.; Blond, E. Transient Thermo-Mechanical Analysis of Steel Ladle Refractory Linings Using Mechanical Homogenization Approach. Ceramics 2020, 3, 171-189.

Abstract

Mortarless refractory masonry structures are widely used in the steel industry for the linings of many high-temperature industrial applications including steel ladle. The design and the optimization of these components require accurate numerical models that consider the presence of joints as well as joints closure and opening due to cyclic heating and cooling. The present work reports on the formulation, numerical implementation, validation, and application of homogenized numerical models for simulation of refractory masonry structures with dry joints. The validated constitutive model has been used to simulate a steel ladle and to analyze its transient thermomechanical behavior during a typical thermal cycle of steel ladle. 3D solution domain, enhanced thermal and mechanical boundary conditions have been used. Parametric studies to investigate the impact of joints thickness on the thermomechanical response of the ladle have been carried out. The results clearly demonstrate that the thermomechanical behavior of mortarless masonry is orthotropic nonlinear due to gradual closure and reopening of joints with the increase and decrease of temperature. Also, resulting thermal stresses increase with the increase of temperature and decrease with the increase of joints thickness.

Keywords

refractories; mortarless masonry; mechanical homogenization; thermomechanical modeling; steel ladle

Subject

Engineering, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.