The novel coronavirus (SARS-CoV-2) is a human pathogen recently emerged in China, causing a global pandemic of severe respiratory illness (COVID19). SARS-CoV-2 makes entry into human cells through its spike (S) protein that binds to cell surface receptors. Widespread of SARS-CoV-2 has been attributed to high affinity of S protein to its receptor. A homology model of the receptor binding domain of SARS-CoV-2 S protein (RBD) was built. RBD- receptor docking and published molecular dynamics data were used to map the key RBD-receptor interaction hotspot (RBDhp) on the RBD. Primary virtual screening was carried out against RBDhp using more than 3300 compounds approved by U.S Food and Drug Administration (FDA) and other authorities for human use. Compounds that bind to hpRBD with a binding energy ≤ - 6.5 kcal/mol were subjected to secondary screening using a recently published cryo EM (2.9 Å) structure of RBD. A cardiac glycoside (dgitoxin), two anthracyclines (zorubicin and aclarubicin), a tetracycline derivative (rolitetracycline), a cephalosporin (cefoperazone) and a food dye (E-155) were predicted to be most potent inhibitors of RBD – receptor interaction. An anti-asthmatic drug (zafirlukast) and several other drugs (itrazol, fazadinium, troglitazone, gliquidone, Idarubicin, Oxacillin) were found to be high affinity binders that may have a potential to inhibit RBD – receptor interaction.