Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Evaluation of Combined Use of Drought Indices in the Case of Konya Closed Basin

Version 1 : Received: 24 February 2020 / Approved: 25 February 2020 / Online: 25 February 2020 (11:09:28 CET)

How to cite: Dalkilic, H.Y. Evaluation of Combined Use of Drought Indices in the Case of Konya Closed Basin. Preprints 2020, 2020020368. https://doi.org/10.20944/preprints202002.0368.v1 Dalkilic, H.Y. Evaluation of Combined Use of Drought Indices in the Case of Konya Closed Basin. Preprints 2020, 2020020368. https://doi.org/10.20944/preprints202002.0368.v1

Abstract

The climate covers a series of events that deeply affect human life. It is possible to understand these events through spatial and statistical analyzes. Today, climate change, which is one of the most important of these events and the impact factors of consequences of this change, become a current issue. Drought is cited as one of the consequences of climate change and it is important to examine it with various methods as it can give negative results to both the economy and the nature. In this study, the drought status of the regions where these stations are located and the effects of drought on climate change were statistically calculated and evaluated using Standardized Precipitation Index (SPI), Percentage of Normal Index (PNI), Aridity Index (AI) and Standardized Precipitation -Evopotranspiration Index (SPEI). The precipitation data from 1981 to 2010 were obtained from Cihanbeyli, Karapınar, Çumra, Seydişehir, Kulu, Ereğli, Niğde, Karaman, Beyşehir and Aksaray meteorology stations affiliated to Turkish State Meteorological Service. At the same time, factor analysis and validity-reliability analysis were conducted to test the computability of the indices used in the study as a single index and to determine the reliability of the operations. While using exploratory factor analysis, Kaiser-Meyer-Olkin (KMO) test and Barlett test for factor analysis; Cronbach's alpha coefficient was used for reliability analysis. In our study, K-Means Cluster Analysis method was performed to determine the cutoff values of indices. According to the result of cluster analysis for the new (common) index, new clusters were created and ANOVA test was conducted to determine whether there was a difference between clusters.

Keywords

Aridity Index (AI); Percentage of Normal Index (PNI); Standardized Precipitation -Evopotranspiration Index (SPEI); Standardized Precipitation Index (SPI); Drought; Factor Analysis; Reliability Analysis

Subject

Engineering, Civil Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.