Preprint
Review

Sequencing Enabling Design and Learning in Synthetic Biology

This version is not peer-reviewed.

Submitted:

16 February 2020

Posted:

17 February 2020

Read the latest preprint version here

Abstract
The ability to read and quantify nucleic acids such as DNA and RNA using sequencing technologies has revolutionized our understanding of life. With the emergence of synthetic biology, these tools are now being put to work in new ways - enabling de novo biological design. Here, we show how sequencing is supporting the creation of a new wave of biological parts and systems, as well as providing the vast data sets needed for the machine learning of design rules for predictive bioengineering. However, we believe this is only the tip of the iceberg and end by providing an outlook on recent advances that will likely broaden the role of sequencing in synthetic biology and its deployment in real-world environments.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1293

Views

739

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated