Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Fast Confirmation of Antibody Identity by MALDI-TOF-MS Fingerprints

Version 1 : Received: 14 February 2020 / Approved: 15 February 2020 / Online: 15 February 2020 (15:46:27 CET)

A peer-reviewed article of this Preprint also exists.

Tscheuschner, G.; Schwaar, T.; Weller, M.G. Fast Confirmation of Antibody Identity by MALDI-TOF MS Fingerprints. Antibodies 2020, 9, 8. Tscheuschner, G.; Schwaar, T.; Weller, M.G. Fast Confirmation of Antibody Identity by MALDI-TOF MS Fingerprints. Antibodies 2020, 9, 8.

Journal reference: Antibodies 2020, 9, 8
DOI: 10.3390/antib9020008

Abstract

Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Also, nearly all commercial antibody suppliers may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De-novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF-MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies and to assign a specific reagent to a datasheet of a commercial supplier, a public database record or an antibody ID.

Subject Areas

Antibody ID; antibody registry; Research Resource Identifier; RRID; reproducibility; quality control; documentation; traceability; clones; biochemical reagents; diagnostics; immunoassays; ELISA; western blot; immunohistochemistry; microarray; biosensor

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.