Preprint
Article

A Quantum Heat Exchanger for Nanotechnology

This version is not peer-reviewed.

Submitted:

06 February 2020

Posted:

07 February 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
In this paper, we design a quantum heat exchanger which converts heat into light on relatively short quantum optical time scales. Our scheme takes advantage of collective cavity-mediated laser cooling of an atomic gas inside a cavitating bubble. Laser cooling routinely transfers individually trapped ions to nano-Kelvin temperatures for applications in quantum technology. The quantum heat exchanger which we propose here is expected to provide cooling rates of the order of Kelvin temperatures per millisecond and is expected to find applications in micro and nanotechnology.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

207

Views

155

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated