Preprint
Article

Optimal Conditions of Membrane Filtration Process in the Treatment of Blending Water by Lab-Scale and Pilot-Scale Tests

This version is not peer-reviewed.

Submitted:

01 February 2020

Posted:

03 February 2020

You are already at the latest version

Abstract
The aim of this study is to evaluate the optimal conditions of membrane filtration process. Both laboratory test and pilot-scale test were conducted to examine a treated water on blending water. The water sample were prepared by blending a raw water and the effluent water filtered through an organic membrane. The optimal efficiency in the treatment of water quality at the lab-scale test was generated under conditions of flux at 2.0 m3/m2∙day, the blending ratio of 4:1, and the optimal dosage of coagulant at 20 ppm. The pilot-scale test resulted in that the optimal efficiency was obtained under conditions of flux at 2.0 m3/m2∙day and the blending ratio of 6.0:1. However, the different results between lab-scale and pilot-scale tests on the optimal dosage of coagulant implied that it is difficult to achieve the stable condition of process operation at the low level of coagulant. In summary, the results indicated that, in the combination process of organic membrane and ceramic membrane, the recovery efficiency was achieved above the level of 98.4 %. Compared to 92.1 % in a single organic membrane process, the combination process is 6.3 % more efficient than the single one. This combination process of water treatment lead to stable recovery rates by the optimal input of dosage, less pollution load to water, and a stabilized filtration system.
Keywords: 
ceramic membrane; combination process; microfiltration; optimization; recovery efficiency
Subject: 
Engineering  -   Chemical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

325

Views

206

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated