Preprint
Article

This version is not peer-reviewed.

High-frequency Near-infrared Diode Laser Irradiation Attenuates IL-1β-induced Expression of Inflammatory Cytokines and Matrix Metalloproteinases in Human Primary Chondrocytes

Submitted:

08 January 2020

Posted:

09 January 2020

You are already at the latest version

Abstract
High-frequency near-infrared diode laser provides high peak output, low heat accumulation, and efficient biostimulation. Although these characteristics are considered suitable for osteoarthritis (OA) treatment, the effect of high-frequency near-infrared diode laser in in vitro or in vivo OA models has not yet been reported. Therefore, we aimed to assess the biological effects of high-frequency near-infrared diode laser irradiation on IL-1β-induced chondrocyte inflammation in an in vitro OA model. Normal Human Articular Chondrocyte-Knee (NHAC-Kn) cells were stimulated with human recombinant IL-1β and irradiated with high-frequency near-infrared diode laser (910 nm, 4 or 8 J/cm2). The mRNA and protein expression of relevant inflammation- and cartilage destruction-related proteins was analyzed. IL-1β treatment significantly increased the mRNA levels of IL-1β, IL-6, TNF-α, MMP-1, MMP-3, and MMP-13. High-frequency near-infrared diode laser irradiation significantly reduced the IL-1β-induced expression of IL-1β, IL-6, TNF-α, MMP-1, and MMP-3. Similarly, high-frequency near-infrared diode laser irradiation decreased the IL-1β-induced increase in protein expression and secreted levels of MMP-1 and MMP-3. These results highlight the therapeutic potential of high-frequency near-infrared diode laser in OA.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated