Preprint Review Version 1 This version is not peer-reviewed

Generation of Retinaldehyde for Retinoic Acid Biosynthesis

Version 1 : Received: 14 December 2019 / Approved: 16 December 2019 / Online: 16 December 2019 (07:18:46 CET)

A peer-reviewed article of this Preprint also exists.

Belyaeva, O.V.; Adams, M.K.; Popov, K.M.; Kedishvili, N.Y. Generation of Retinaldehyde for Retinoic Acid Biosynthesis. Biomolecules 2020, 10, 5. Belyaeva, O.V.; Adams, M.K.; Popov, K.M.; Kedishvili, N.Y. Generation of Retinaldehyde for Retinoic Acid Biosynthesis. Biomolecules 2020, 10, 5.

Journal reference: Biomolecules 2019, 10, 5
DOI: 10.3390/biom10010005

Abstract

The concentration of all-trans-retinoic acid, the bioactive derivative of vitamin A, is critically important for the optimal performance of numerous physiological processes. Either too little or too much of retinoic acid in developing or adult tissues is equally harmful. All-trans-retinoic acid is produced by the irreversible oxidation of all-trans-retinaldehyde. Thus, the concentration of retinaldehyde as the immediate precursor of retinoic acid has to be tightly controlled. However, the enzymes that produce all-trans-retinaldehyde for retinoic acid biosynthesis and the mechanisms responsible for the control of retinaldehyde levels have not yet been fully defined. The goal of this review is to summarize the current state of knowledge regarding the identities of physiologically relevant retinol dehydrogenases, their enzymatic properties and tissue distribution, and to discuss potential mechanisms for the regulation of the flux from retinol to retinaldehyde.

Subject Areas

retinoic acid; retinol; retinaldehyde; short-chain dehydrogenase; vitamin a; retinol dehydrogenase; retinaldehyde reductase; embryogenesis

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.