PreprintArticleVersion 2Preserved in Portico This version is not peer-reviewed
Monitoring the Interfacial Polymerization of Piperazine and Trimesoyl Chloride with Hydrophilic Interlayer or Macromolecular Additive by in-situ FT-IR Spectroscopy
Version 1
: Received: 31 October 2019 / Approved: 1 November 2019 / Online: 1 November 2019 (12:58:52 CET)
Version 2
: Received: 5 November 2019 / Approved: 6 November 2019 / Online: 6 November 2019 (11:59:32 CET)
Version 4
: Received: 7 January 2020 / Approved: 8 January 2020 / Online: 8 January 2020 (09:04:29 CET)
Yang, X. Monitoring the Interfacial Polymerization of Piperazine and Trimesoyl Chloride with Hydrophilic Interlayer or Macromolecular Additive by In Situ FT-IR Spectroscopy. Membranes2020, 10, 12.
Yang, X. Monitoring the Interfacial Polymerization of Piperazine and Trimesoyl Chloride with Hydrophilic Interlayer or Macromolecular Additive by In Situ FT-IR Spectroscopy. Membranes 2020, 10, 12.
Yang, X. Monitoring the Interfacial Polymerization of Piperazine and Trimesoyl Chloride with Hydrophilic Interlayer or Macromolecular Additive by In Situ FT-IR Spectroscopy. Membranes2020, 10, 12.
Yang, X. Monitoring the Interfacial Polymerization of Piperazine and Trimesoyl Chloride with Hydrophilic Interlayer or Macromolecular Additive by In Situ FT-IR Spectroscopy. Membranes 2020, 10, 12.
Abstract
The interfacial polymerization (IP) of piperazine (PIP) and trimesoyl chloride (TMC) has been extensively utilized to synthesize the nanofiltration (NF) membrane. However, it is still a huge challenge to monitor the IP reaction, because of the fast reaction rate and the formed ultra-thin film. Herein, two effective strategies are applied to reduce the IP reaction rate: (1) the introduction of hydrophilic interlayers between the porous substrate and the formed polyamide layer; (2) the addition of macromolecular additives in the aqueous solution of PIP. As a result, in-situ FT-IR spectroscopy was firstly used to monitor the IP reaction of PIP/TMC reaction system, with hydrophilic interlayers or macromolecular additives. Moreover, we study the formed polyamide layer growth on the substrate, in a real-time manner. The in-situ FT-IR experimental results confirm that the IP reaction rates are effectively suppressed and the formed polyamide thickness reduces from 138±24 nm to 46±2 nm. Furthermore, the optimized NF membrane with excellent performance are consequently obtained, which include the boosted water permeation flux about 141~238 (L·m2·h/MPa) and superior salt rejection of Na2SO4 > 98.4%.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Commenter: Xi Yang
Commenter's Conflict of Interests: Author