Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Monitoring the Interfacial Polymerization of Piperazine and Trimesoyl Chloride with Hydrophilic Interlayer or Macromolecular Additive by in-situ FT-IR Spectroscopy

Version 1 : Received: 31 October 2019 / Approved: 1 November 2019 / Online: 1 November 2019 (12:58:52 CET)
Version 2 : Received: 5 November 2019 / Approved: 6 November 2019 / Online: 6 November 2019 (11:59:32 CET)
Version 4 : Received: 7 January 2020 / Approved: 8 January 2020 / Online: 8 January 2020 (09:04:29 CET)

A peer-reviewed article of this Preprint also exists.

Yang, X. Monitoring the Interfacial Polymerization of Piperazine and Trimesoyl Chloride with Hydrophilic Interlayer or Macromolecular Additive by In Situ FT-IR Spectroscopy. Membranes 2020, 10, 12. Yang, X. Monitoring the Interfacial Polymerization of Piperazine and Trimesoyl Chloride with Hydrophilic Interlayer or Macromolecular Additive by In Situ FT-IR Spectroscopy. Membranes 2020, 10, 12.

Abstract

The interfacial polymerization (IP) of piperazine (PIP) and trimesoyl chloride (TMC) has been extensively utilized to synthesize the nanofiltration (NF) membrane. However, it is still a huge challenge to monitor the IP reaction, because of the fast reaction rate and the formed ultra-thin film. Herein, two effective strategies are applied to reduce the IP reaction rate: (1) the introduction of hydrophilic interlayers between the porous substrate and the formed polyamide layer; (2) the addition of macromolecular additives in the aqueous solution of PIP. As a result, in-situ FT-IR spectroscopy was firstly used to monitor the IP reaction of PIP/TMC reaction system, with hydrophilic interlayers or macromolecular additives. Moreover, we study the formed polyamide layer growth on the substrate, in a real-time manner. The in-situ FT-IR experimental results confirm that the IP reaction rates are effectively suppressed and the formed polyamide thickness reduces from 138±24 nm to 46±2 nm. Furthermore, the optimized NF membrane with excellent performance are consequently obtained, which include the boosted water permeation flux about 141~238 (L·m2·h/MPa) and superior salt rejection of Na2SO4 > 98.4%.

Keywords

interfacial polymerization; in-situ FT-IR spectroscopy; thin-film composite membrane; nanofiltration membrane

Subject

Chemistry and Materials Science, Polymers and Plastics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.