Preprint
Article

This version is not peer-reviewed.

Using Convolutional Networks and Satellite Imagery to Predict Disease Density in a Developing Country

Submitted:

25 October 2019

Posted:

28 October 2019

You are already at the latest version

Abstract
Rapid increase in digital data coupled with advances in deep learning algorithms is opening unprecedented opportunities for incorporating multiple data sources for modeling spatial dynamics of human infectious diseases. We used Convolutional Neural Networks (CNN) in conjunction with satellite imagery-based urban housing and socio-economic data to predict disease density in a developing country setting. We explored both single (uni) and multiple input (multimodality) network architectures for this purpose. We achieved maximum test set accuracy of 81.6 per cent using a single input CNN model built with one convolutional layer and trained using housing image data. However, this fairly good performance was biased in favor of specific disease density classes due to an unbalanced data set despite our use of methods to address the problem. These results suggest CNN are promising for modeling spatial dynamics of human infectious diseases, especially in a developing country setting. Urban housing signals extracted from satellite imagery seem suitable for this purpose, under the same context.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated