Sestili, F.; Garcia-Molina, M.D.; Gambacorta, G.; Beleggia, R.; Botticella, E.; De Vita, P.; Savatin, D.V.; Masci, S.; Lafiandra, D. Provitamin A Biofortification of Durum Wheat through a TILLING Approach. Int. J. Mol. Sci.2019, 20, 5703.
Sestili, F.; Garcia-Molina, M.D.; Gambacorta, G.; Beleggia, R.; Botticella, E.; De Vita, P.; Savatin, D.V.; Masci, S.; Lafiandra, D. Provitamin A Biofortification of Durum Wheat through a TILLING Approach. Int. J. Mol. Sci. 2019, 20, 5703.
Sestili, F.; Garcia-Molina, M.D.; Gambacorta, G.; Beleggia, R.; Botticella, E.; De Vita, P.; Savatin, D.V.; Masci, S.; Lafiandra, D. Provitamin A Biofortification of Durum Wheat through a TILLING Approach. Int. J. Mol. Sci.2019, 20, 5703.
Sestili, F.; Garcia-Molina, M.D.; Gambacorta, G.; Beleggia, R.; Botticella, E.; De Vita, P.; Savatin, D.V.; Masci, S.; Lafiandra, D. Provitamin A Biofortification of Durum Wheat through a TILLING Approach. Int. J. Mol. Sci. 2019, 20, 5703.
Abstract
Macro and micronutrients, essential for the maintenance of human metabolism, are daily assimilated through the diet. Wheat and other major cereals are a good source of nutrients, such as carbohydrates and proteins, but cannot supply enough amounts of essential micronutrients which includes provitamin A. As vitamin A deficiency (VAD) lead to several serious diseases spread worldwide, the biofortification of a major staple crop, such as wheat, represents an effective way to preserve human health in developing countries. In the present work, a key enzyme involved in the branch of carotenoids pathway producing β-carotene, lycopene epsilon cyclase, has been targeted by a TILLING approach in a “Block strategy” perspective. The null mutant genotype showed a strong reduction in the expression of lcyE gene and also interesting pleiotropic effects on an enzyme (β-ring hydroxylase) acting downstream in the pathway. Biochemical profiling of carotenoids in the wheat mutant lines showed an increase of roughly 75% in β-carotene in the grains of the complete mutant line vs. the control. In conclusions, here we describe the production and the characterization of a new wheat line biofortified in provitamin A obtained through a non-transgenic approach also shading new light on the molecular mechanism governing carotenoids biosynthesis in durum wheat.
Keywords
durum wheat; β-carotene; TILLING; biofortification; vitamin A deficiency
Subject
Biology and Life Sciences, Plant Sciences
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.