Preprint
Article

This version is not peer-reviewed.

Bending, Nanoindentation and Plasticity Noise in FCC Single and Poly Crystals

A peer-reviewed article of this preprint also exists.

Submitted:

21 October 2019

Posted:

22 October 2019

You are already at the latest version

Abstract
We present a high-throughput nanoindentation study of in-situ bending effects on incipient plastic deformation behavior of polycrystalline and single-crystalline pure aluminum and pure copper at ultra-nano depths (<200nm). We find that hardness displays a statistically inverse dependence on in-plane stress for indentation depths smaller than 10nm, and the dependence disappears for larger indentation depths. In addition, plastic noise in the nanoindentation force and displacement displays statistically robust noise features, independently of applied stresses. Our experimental results suggest the existence of a regime in FCC crystals where ultra-nano hardness is sensitive to residual applied stresses, but plasticity pop-in noise is insensitive to it.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated