Preprint
Article

This version is not peer-reviewed.

Online Subspace Tracking of Sensors Data for Damage Propagation Modeling and Predictive Analytics

Submitted:

17 October 2019

Posted:

18 October 2019

You are already at the latest version

Abstract
We analyze damage propagation modeling of turbo-engines in a data-driven approach. We investigate subspace tracking assuming a low dimensional manifold structure and a static behavior during the healthy state of the machines. Our damage propagation model is based on the deviation of the data from the static behavior and uses the notion of health index as a measure of the condition. Hence, we incorporate condition-based maintenance and estimate the remaining useful life based on the current and previous health indexes. This paper proposes an algorithm that adapts well to the dynamics of the data and underlying system, and reduces the computational complexity by utilizing the low dimensional manifold structure of the data. A significant performance improvement is demonstrated over existing methods by using the proposed algorithm on CMAPSS Turbo-engine datasets.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated