Preprint
Article

This version is not peer-reviewed.

A New Health Assessment Prediction Approach: Multi-Scale Ensemble Extreme Learning Machine

Submitted:

22 May 2020

Posted:

24 May 2020

You are already at the latest version

Abstract
This work can be considered as a first step of designing a future competitive data-driven approach for remaining useful life prediction of aircraft engines. The proposed approach is an ensemble of serially connected extreme learning machines. The results of prediction of the first networks are scaled and fed to the next networks as an additive features to the original inputs. This feature mapping allows increasing the correlation of training inputs with their targets by holding new prior knowledge about the probable behavior of the target function. The proposed approach is evaluated under remaining useful estimation using a set of “time-varying” data retrieved from the public dataset C-MAPSS (Commercial Modular Aero Propulsion System Simulation) provided by NASA. The prediction performances are compared to basic extreme learning machine and proved the effectiveness of the proposed methodology.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated