Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorus as Anode Material: Review

Version 1 : Received: 29 September 2019 / Approved: 30 September 2019 / Online: 30 September 2019 (03:29:10 CEST)

A peer-reviewed article of this Preprint also exists.

Zhao, H.; Wang, L.; Chen, Z.; He, X. Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorous as Anode Material: Review. Energies 2019, 12, 3897. Zhao, H.; Wang, L.; Chen, Z.; He, X. Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorous as Anode Material: Review. Energies 2019, 12, 3897.

Abstract

Electric vehicles (EVs) are being endorsed as the uppermost successor to fuel-powered cars, with timetables for banning the sale of petrol-fueled vehicles announced in many countries. However, the range and charging times of EVs are still considerable concerns. Fast charging could be a solution to consumers' range anxiety and the acceptance of EVs. Nevertheless, it is a complicated and systematized challenge to realize the fast charging of EVs because it includes the coordinated development of battery cells, including electrode materials, EV battery power systems, charging piles, electric grids, etc. This paper aims to serve as an analysis for the development of fast-charging technology, with a discussion of the current situation, constraints and development direction of EV fast-charging technologies from the macroscale and microscale perspectives of fast-charging challenges. It is emphasized that to essentially solve the problem of fast charging, the development of new battery materials, especially anode materials with improved lithium ion diffusion coefficients, is the key. It is highlighted that red phosphorus is the most promising anode that can simultaneously satisfy the double standards of high-energy density and fast-charging performance to a maximum degree.

Keywords

fast-charging; electric vehicles; infrastructure; electrode materials; Li-ion batteries

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.