Preprint
Article

Behavior of Floquet Topological Quantum States in Optically Driven Semiconductors

This version is not peer-reviewed.

Submitted:

18 September 2019

Posted:

19 September 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Spatially uniform optical excitations can induce Floquet topological band structures within insulators which can develop similar or equal characteristics as are known from three-dimensional topological insulators. We derive in this article theoretically the development of Floquet topological quantum states for electromagnetically driven semiconductor bulk matter and we present results for the lifetime of these states and their occupation in the non-equilibrium. The direct physical impact of the mathematical precision of the Floquet-Keldysh theory is evident when we solve the driven system of a generalized Hubbard model with our framework of dynamical mean field theory (DMFT) in the non-equilibrium for a case of ZnO. The physical consequences of the topological non-equilibrium effects in our results for correlated systems are explained with their impact on optoelectronic applications.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

333

Views

457

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated