Preprint
Review

This version is not peer-reviewed.

Roles of Extracellular Vesicles (EVs) Carrying HSPs in Cancer Biomarkers, Immune Surveillance, and Immune Evasion

Eman Taha  ✝,Kisho Ono  ✝,Takanori Eguchi  *,✝

  ✝ These authors contributed equally to this work.

A peer-reviewed article of this preprint also exists.

Submitted:

16 August 2019

Posted:

17 August 2019

You are already at the latest version

Abstract
Extracellular vesicles (EV) released by tumor cells are a major aspect of the resistance-associated secretory phenotype (RASP), by which immune evasion can be established. Heat shock proteins (HSPs) are an evolutionarily conserved family of molecular chaperones, which stabilize proteins, minimize protein misfolding and aggregation within the cell, besides facilitating protein translocation, refolding and degradation. (i) Releases of extracellular HSPs (ex-HSP) and EV-associated HSPs (EV-HSP) are essential in RASP, by which molecular cotransfer of HSPs with oncogenic factors into recipient cells can promote cancer progression and resistance against stress such as hypoxia, radiation, chemicals, and immune system. (ii) RASP of tumor cells can eject anticancer drugs, molecularly targeted therapeutics, and immune checkpoint inhibitors with EVs. (iii) Cytotoxic lipids can be also released from tumor cells as RASP. Nevertheless, ex-HSP and EV-HSP can play immunostimulatory and immunosuppressive roles by binding to receptors such as LRP1/CD91/A2MR, scavenger receptors, and toll-like receptors expressed on recipient cells. Liquid biopsy of HSPs in body fluids may be useful in diagnosis, prognosis, and treatment in cancer. Regarding HSP90-targeted therapeutics, we summarize the pros, cons, and problem solutions in this review. Although production of HSPs are canonically induced by heat shock factor 1 (HSF1) and hypoxia-inducible factor 1 (HIF-1), recent studies discovered that production of HSPs is also regulated by matrix metalloproteinase 3 (MMP3) and heterochromatin protein 1 (HP1) and production of cochaperone CDC37 is reciprocally regulated by myeloid zinc finger 1 (MZF1) and SCAN-D1.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated