Review
Version 1
Preserved in Portico This version is not peer-reviewed
Prominent Inhibitory Projections Guide Sensorimotor Computation: An Invertebrate Perspective
Version 1
: Received: 7 August 2019 / Approved: 8 August 2019 / Online: 8 August 2019 (17:24:40 CEST)
How to cite: Hughes, S.; Celikel, T. Prominent Inhibitory Projections Guide Sensorimotor Computation: An Invertebrate Perspective. Preprints 2019, 2019080112 (doi: 10.20944/preprints201908.0112.v1). Hughes, S.; Celikel, T. Prominent Inhibitory Projections Guide Sensorimotor Computation: An Invertebrate Perspective. Preprints 2019, 2019080112 (doi: 10.20944/preprints201908.0112.v1).
Abstract
From single-cell organisms to complex neural networks, all evolved to provide control solutions to generate context and goal-specific actions. Neural circuits performing sensorimotor computation to drive navigation employ inhibitory control as a gating mechanism, as they hierarchically transform (multi)sensory information into motor actions. Here, we focus on this literature to critically discuss the proposition that prominent inhibitory projections form sensorimotor circuits. After reviewing the neural circuits of navigation across various invertebrate species, we argue that with increased neural circuit complexity and the emergence of parallel computations inhibitory circuits acquire new functions. The contribution of inhibitory neurotransmission for navigation goes beyond shaping the communication that drives motor neurons, instead, include encoding of emergent sensorimotor representations. A mechanistic understanding of the neural circuits performing sensorimotor computations in invertebrates will unravel the minimum circuit requirements driving adaptive navigation.
Keywords
active sensing; navigation; neural circuits; inhibition; C. elegans; invertebrate
Subject
BEHAVIORAL SCIENCES, Behavioral Neuroscience
Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Comments (0)
We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.
Leave a public commentSend a private comment to the author(s)