Preprint Article Version 2 Preserved in Portico This version is not peer-reviewed

Heat Pump Dryer Design Optimization Algorithm

Version 1 : Received: 23 July 2019 / Approved: 25 July 2019 / Online: 25 July 2019 (06:35:55 CEST)
Version 2 : Received: 16 September 2019 / Approved: 17 September 2019 / Online: 17 September 2019 (15:27:08 CEST)

A peer-reviewed article of this Preprint also exists.

Andrade, B.; Amorim, I.; Silva, M.; Savosh, L.; Frölén Ribeiro, L. Heat Pump Dryer Design Optimization Algorithm. Inventions 2019, 4, 63. Andrade, B.; Amorim, I.; Silva, M.; Savosh, L.; Frölén Ribeiro, L. Heat Pump Dryer Design Optimization Algorithm. Inventions 2019, 4, 63.

Abstract

Drying food involves complex physical atmospheric mechanisms with non-linear relations from the air-food interactions and those relations are strongly dependent on the moisture contents and the type of food. Such dependence makes it complex to design suitable dryers dedicated to a single drying process. To streamline the design of a novel compact food-drying machine, a heat pump dryer component design optimization algorithm was developed as a subprogram of a Computer Aided Engineering tool. The algorithm requires inputting food and air properties, the volume of the drying container and the technical specifications of the heat-pump off-the shelf components. The heat required to dehumidify the food supplied by the heat exchange process from condenser to evaporator, and the compressor’s requirements (refrigerant mass flow rate and operating pressures) are then calculated. Compressors can then be selected based in the volume and type of food to be dried. The algorithm is shown via a flow chart to guide the user through 3 different stages: Changes in drying air properties, Heat flow within dryer and Product moisture content. Example results of how different compressors are selected for different type of produces and quantities (Agaricus Blazei mushroom with 3 different moisture contents or fish from Thunnini tribe) conclude this article.

Keywords

algorithm; heat-pump; drying; food; design; optimization

Subject

Engineering, Industrial and Manufacturing Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.