Preprint
Article

This version is not peer-reviewed.

A Physically-Motivated Quantisation of the Electromagnetic Field on Curved Spacetimes

A peer-reviewed article of this preprint also exists.

Submitted:

06 July 2019

Posted:

08 July 2019

You are already at the latest version

Abstract
Recently, Bennett et al. [Eur. J. Phys. 37:014001, 2016] presented a physically-motivated and explicitly gauge-independent scheme for the quantisation of the electromagnetic field in flat Minkowski space. In this paper we generalise this field quantisation scheme to curved spacetimes. Working within the standard assumptions of quantum field theory and only postulating the physicality of the photon, we derive the Hamiltonian, $\hat H$, and the electric and magnetic field observables, $\hat {\bf E}$ and $\hat {\bf B}$, without having to invoke a specific gauge. As an example, we quantise the electromagnetic field in the spacetime of an accelerated Minkowski observer, Rindler space, and demonstrate consistency with other field quantisation schemes by reproducing the Unruh effect.
Keywords: 
;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated