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Abstract: Recently, Bennett et al. [Eur. J. Phys. 37:014001, 2016] presented a physically-motivated1

and explicitly gauge-independent scheme for the quantisation of the electromagnetic field in flat2

Minkowski space. In this paper we generalise this field quantisation scheme to curved spacetimes.3

Working within the standard assumptions of quantum field theory and only postulating the4

physicality of the photon, we derive the Hamiltonian, Ĥ, and the electric and magnetic field5

observables, Ê and B̂, without having to invoke a specific gauge. As an example, we quantise6

the electromagnetic field in the spacetime of an accelerated Minkowski observer, Rindler space, and7

demonstrate consistency with other field quantisation schemes by reproducing the Unruh effect.8

Keywords: Quantum Electrodynamics, Relativistic Quantum Information9

1. Introduction10

For many theorists the question “what is a photon?” remains highly non-trivial [1]. It is in11

principle possible to uniquely define single photons in free space [2]; however, the various roles that12

photons play in light-matter interactions [3], the presence of boundary conditions in experimental13

scenarios [4,5] and our ability to arbitrarily shape single photons [6] all lead to a multitude of possible14

additional definitions. Yet this does not stop us from utilising single photons for tasks in quantum15

information processing, especially for quantum cryptography, quantum computing, and quantum16

metrology [7]. In recent decades, it has become possible to produce single photons on demand [8], to17

transmit them over 100 kilometres through Earth’s atmosphere [9] and to detect them with very high18

efficiencies [10]. Moreover, single photons have been an essential ingredient in experiments probing19

the foundations of quantum physics, such as entanglement and locality [11,12].20

Recently, relativistic quantum information has received a lot of attention in the literature.21

Pioneering experiments verify the possibility of quantum communication channels between Earth’s22

surface and space [13] and have transmitted photons between the Earth and low-orbit satellites [14],23

while quantum information protocols are beginning to extend their scope towards the relativistic arena24

[15–21]. The effects of gravity on satellite-based quantum communication schemes, entanglement25

experiments and quantum teleportation have already been shown to produce potentially observable26

effects [22–25]. Non-inertial motion strongly affects quantum information protocols and quantum27

optics set-ups [26–30], with the mere propagation and detection of photons in such frames being highly28

non-trivial [31–34].29

Motivated by these recent developments, this paper generalises a physically-motivated30

quantisation scheme of the electromagnetic field in flat Minkowski space [35] to curved space31

times. Our approach aims to obtain the basic tools for analysing and designing relativistic quantum32

information experiments in a more direct way than alternative derivations, and without having to33
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invoke a specific gauge. Working within the standard assumptions of quantum field theory and34

only postulating the physicality of the photon, we derive the Hamiltonian, Ĥ, and the observables,35

Ê and B̂, of the electromagnetic field. Retaining gauge-independence is important when modelling36

the interaction of the electromagnetic field with another quantum system, like an atom. In this case,37

different choices of gauge correspond to different subsystem decompositions, thereby affecting our38

notion of what is ‘atom’ and what is ‘field’ [36,37]. Composite quantum systems can be decomposed39

into subsystems in many different ways. Choosing an unphysical decomposition can result in the40

prediction of spurious effects when analysing the dynamics of one subsystem while tracing out the41

degrees of freedom of the other [38]. Hence it is important to first formulate quantum electrodynamics42

in an entirely arbitrary gauge, as this allows us to subsequently fix the gauge when needed.43

The direct canonical quantisation of the electromagnetic field in terms of the (real) gauge44

independent electric and magnetic fields, E and B, is not possible, since these do not offer a complete45

set of canonical variables [39–43]. As an alternative, Bennett et al. [35] suggested to use the physicality46

of the photon as the starting point when quantising the electromagnetic field. Assuming that the47

electromagnetic field is made up of photons and identifying their relevant degrees of freedom, like48

frequencies and polarisations, results in a harmonic oscillator Hamiltonian Ĥ for the electromagnetic49

field. Using this Hamiltonian and demanding consistency of the dynamics of expectation values with50

classical electrodynamics, especially with Maxwell’s equations, is sufficient to then obtain expressions51

for Ê and B̂ without having to invoke vector potentials and without having to choose a specific gauge.52

Generalising Ref. [35] from flat Minkowski space to curved space times, we obtain field observables53

which could be used, for example, to model photonics experiments in curved spacetimes in a similar54

fashion to how quantum optics typically models experiments in Minkowski space [5,36,44].55

Additional problems with our understanding of photons (indeed all particles) arise when we
consider quantum fields in gravitationally bound systems [7]. General relativity can be viewed as
describing gravitation as the consequence of interactions between matter and the curvature of a
Lorentzian (mixed signature) spacetime with metric gµν [45,46]. Locally, however, any spacetime
appears flat, by which we mean

gµν(p) ∼= ηµν ≡ diag(+1,−1,−1,−1) , (1)

the familiar special relativistic invariant line-element of Minkowski space. For Earth’s surface where56

gravity is (nearly) uniform this limit can be taken everywhere, and spacetime curvature can be57

neglected. Spacetimes in relativity have no preferred coordinate frame, so physical laws must satisfy the58

principle of covariance and be coordinate independent and invariant under coordinate transformations59

[47]. Indeed, it has been demonstrated that, while the form of the Hamiltonian may change under60

general coordinate transformations, physically measurable predictions do not [48].61

Studying the behaviour of quantum fields in this setting is typically dealt with by using quantum62

field theory in curved spacetime. This is a first approximation to a theory of quantum gravity which63

considers covariant quantum fields propagating on a fixed curved background, whose geometry is64

not influenced by the field [49,50]. Intuitively this is what is meant by a static spacetime, where the65

time derivative of the metric is zero. This approximation holds on typical astrophysical length and66

energy scales and is thus well-suited for dealing with most physical situations [51]. How to generalise67

field quantisation to curved spaces is very well established, and the theory has produced several major68

discoveries, like the prediction that the particle states seen by a given observer depend on the geometry69

of their spacetime [52–54]. For example, the vacuum state of one observer does not necessarily coincide70

with the vacuum state of an observer in an alternative reference frame. This surprising result even71

arises in flat Minkowski space, where the Fulling-Davies-Unruh effect predicts that an observer with72

constant acceleration sees the Minkowski vacuum as a thermal state with temperature proportional to73

their acceleration [55–59].74

To make quantum field theory in curved spacetimes more accessible to quantum opticians, and to75

obtain more insight into the aforementioned effects and their experimental ramifications, this paper76
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considers static, 4-dimensional Lorentzian spacetimes. Our starting point for the derivation of the77

field observables Ĥ, Ê and B̂ is the assumption that the detectors belonging to a moving observer78

see photons. These are the energy quanta of the electromagnetic field in curved space times. To79

demonstrate the consistency of our approach with other field quantisation schemes, we consider the80

explicit case of an accelerated Minkowski observer, who is said to reside in a Rindler spacetime [60–64],81

and reproduce Unruh’s predictions [55–59].82

This paper is divided into five sections. In Sec. 2, we provide a summary of the gauge-independent83

quantisation scheme by Bennett et al. [35] which applies in the case of flat spacetime. In Sec. 3, we84

discuss what modifications must be made to classical electrodynamics when moving to the more85

general setting of a stationary curved spacetime. We then show that similar modifications allow for86

the gauge-independent quantisation scheme of Sec. 2 to be applied in this more general setting. In87

Sec. 4, we apply our results to the specific case of a uniformly accelerating reference frame and have a88

closer look at the Unruh effect. Finally, we draw our conclusions in Sec. 5. For simplicity, we work in89

natural units h̄ = c = 1 throughout.90

2. Gauge-independent quantisation of the electromagnetic field91

In this section we review the gauge dependence inherent in the electromagnetic field and contrast92

standard, more mathematically-motivated quantisation procedures with the gauge-independent93

method of Bennett et al. [35].94

2.1. Classical electrodynamics95

Under coordinate transformations, the electric and magnetic fields transform as the components
of an antisymmetric 2-form, the field strength tensor

Fµν =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 . (2)

The field strength is defined in terms of the 4-vector potential by

Fµν = ∂µ Aν − ∂ν Aµ . (3)

We can obtain the equations of motion by applying the Euler-Lagrange equations to the Lagrangian
density

L = −1
4

FµνFµν =
1
2

(
E2 − B2

)
, (4)

which gives the Maxwell equation
∂µFµν = 0 . (5)

The field strength tensor also satisfies the Bianchi identity,

∂[σFµν] ≡
1
3
(
∂σFµν + ∂µFνσ + ∂νFσµ

)
= 0 , (6)

and together, Equations (5) and (6) can be used to obtain the standard Maxwell equations expressed in
terms of the magnetic and electric field strengths, E and B,

div (E) = 0 , curl (B) = Ė ,

div (B) = 0 , curl (E) = −Ḃ .
(7)
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The solutions to these equations are transverse plane waves with orthogonal electric and magnetic96

field components with two distinct, physical polarisations propagating through Minkowski space, M,97

at a speed c = 1.98

2.2. Gauge dependence in electromagnetic field quantisation99

The most commonly used methods for quantising fields are the traditional canonical and modern100

path-integral approaches. When applied to electromagnetism, these have to be modified due to the101

gauge-freedom of the theory. For example, in the canonical approach, standard commutation relations102

cannot be satisfied. One can get around this by either breaking Lorentz invariance in intermediate103

steps of calculations, or by considering excess degrees of freedom with negative norms that do not104

contribute physically [37]. Standard path integral quantisation fails for electromagnetism because105

the resultant propagator is divergent. The Fadeev-Popov procedure rectifies this by implementing a106

gauge-fixing condition [65]. This method also gives additional terms from non-physical contributions107

in the form of Fadeev-Popov ghosts. Such terms can be ignored for free fields in Minkowski space as108

they only appear in loop diagrams, but in curved spacetimes this is not the case [51]. While physical109

quantities remain gauge-invariant under both approaches to quantisation, non-directly observable110

quantities can become gauge-dependent.111

This can result in conceptual problems when modelling composite quantum systems, like the112

ones that are of interest to those working in relativistic quantum information, quantum optics and113

condensed matter. Suppose H denotes the total Hamiltonian of a composite quantum system. Then114

one can show that any Hamiltonian H′ of the form115

H′ = U† H U , (8)

where U denotes a unitary operator, has the same energy eigenvalues as H. Both Hamiltonians H and116

H′ are unitarily equivalent and can be used interchangeably. However, the dynamics of subsystem117

observables O can depend on the concrete choice of U, since O′ = U† O U and O are in general not the118

same. For example, atom-field interactions depend on the gauge-dependent vector potential A for most119

subsystem decompositions [36,37]. Hence it is important here to formulate quantum electrodynamics120

in an entirely arbitrary gauge and to maintain ambiguity as long as possible, thereby retaining the121

ability to later choose a gauge which does not result in the prediction of spurious effects [38].122

2.3. Physically-motivated gauge-independent method123

In contrast to this, the electromagnetic field quantisation scheme presented in [35] relies upon two124

primary experimentally derived assumptions. Firstly, the electric and the magnetic field expectation125

values follow Maxwell’s equations, and, secondly, the field is composed of photons of energy h̄ωk, or126

ωk in natural units. Whereas in standard canonical quantisation the electromagnetic field’s photon127

construction is a derived result, for the method of [35] it is an initial premise. This is physically128

acceptable, since photons are experimentally detectable entities [7,10]. The motivation for the scheme129

[35] comes from the observation that one observes discrete clicks when measuring a very weak130

electromagnetic field. An experimental definition of photons is that these are electromagnetic field131

excitations with the property that their integer numbers can be individually detected, given a perfect132

detector [10].133

Hence the Fock space for this gauge-independent approach is spanned by states of the form

⊗
λ=1,2

∞⊗
k1=−∞

∞⊗
k2=−∞

∞⊗
k3=−∞

|nkλ〉 , (9)
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where nkλ is the number of excitations of a mode with wave-vector k and physical, transverse
polarisation state λ. Since it is an experimental observation that photons of frequency ωk = |k| have
energy ωk in natural units, the Hamiltonian Ĥ for such a Fock space must satisfy

Ĥ |nkλ〉 = (ωk nkλ + H0) |nkλ〉 , (10)

where H0 is the vacuum or zero-point energy and nkλ is an integer [35]. An infinite set of evenly
spaced energy levels, as is present here, has been proven to be unique to the simple harmonic oscillator
[66]. Hence this Hamiltonian must take the form [5]

Ĥ = ∑
λ=1,2

∫
d3k

(
ωk â†

kλ âkλ + H0

)
, (11)

where the âkλ, â†
kλ are a set of independent ladder operators for each (k, λ) mode, obeying the canonical134

commutation relations135

[âkλ, âk′λ′ ] = 0 , [â†
kλ, â†

k′λ′ ] = 0 , [âkλ, â†
k′λ′ ] = δλλ′δ

3(k− k′) . (12)

Since the classical energy density is quadratic in the electric and magnetic fields, while the above
Hamiltonian is quadratic in the ladder operators, the field operators must be linear superpositions
of creation and annihilation operators [35]. By further demanding that the fields’ expectation values
satisfy Maxwell’s equations, consistency with the Heisenberg equation of motion,

∂

∂t
Ô = −i[Ô, Ĥ] , (13)

allows the coefficients of these superpositions to be deduced, and the (Heisenberg) field operators can136

be shown to be of the form [35]137

Ê(x, t) = i ∑
λ=1,2

∫
d3k
√

ωk
16π3

[
ei(k·x−ωkt) âkλ + H.c.

]
êλ ,

B̂(x, t) = −i ∑
λ=1,2

∫
d3k
√

ωk
16π3

[
ei(k·x−ωkt) âkλ + H.c.

]
(k̂× êλ) , (14)

where êλ is a unit polarisation vector orthogonal to the direction of propagation, with ê1 · ê2 = ê1 · k =

ê2 · k = 0. This is also consistent with the Hamiltonian being a direct operator-valued promotion of its
classical form

Ĥ(t) =
1
2

∫
d3x

[
Ê2(x, t) + B̂2(x, t)

]
. (15)

Comparing Equations (11) and (15) allows us to determine the zero point energy H0 in Minkowski138

space, which coincides with the energy expectation value of the vacuum state |0〉 of the electromagnetic139

field. In quantum optics, Equations (11) and (14) often serve as the starting point for further140

investigations [5,36,44].141

Note that a quantisation scheme in a similar spirit to [35] can be found in [67], which also uses the142

Maxwell and Heisenberg equations to directly quantise the physical field operators.143

3. Gauge-independent quantisation of the electromagnetic field in curved spacetimes144

Many aspects of the quantisation method of Bennett et al. [35] are explicitly non-covariant and145

hence unsuitable for general curved spacetimes with metric gµν. Here we lift the scheme onto static146

spacetimes, maintaining the original global structure and approach.147
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3.1. Classical electrodynamics in curved space148

To begin, consider electromagnetism on stationary spacetimes in general relativity, which are
differentiable manifolds with a metric structure gµν. By stationary we mean ∂0gµν = 0. For any
theory, the standard approach is to follow the minimal-coupling procedure [46,51],

ηµν → gµν ,

∂µ → ∇µ ,∫
d4x →

∫
d4x

√
|g| ,

(16)

where g = det(gµν) and ∇µ is the covariant derivative associated with the metric (Levi-Civita)
connection. Since electric and magnetic fields can be expressed in a covariant form through the field
strength tensor, it is simple to generalise to curved space by just applying this procedure. Firstly, the
derivatives of the four-vector potential generalise to

∇ν Aµ = ∂ν Aµ − Γρ
µν Aρ ,

∇ν Aµ = ∂ν Aµ + Γµ
ρν Aρ ,

(17)

where Γµ
νρ are the standard symmetric Christoffel symbols. The field strength tensor and the

Bianchi identity remain unchanged by these derivatives, as their explicit antisymmetry cancels
all the Christoffel symbols. Thus Equations (3) and (6) still hold in curved spacetimes. The only
modification we need to make is to the (free-space) inhomogeneous Maxwell equation. Applying the
minimal-coupling procedure to Equation (5) gives

∇µFµν = 0 , (18)

which on stationary spacetimes can be written as [61]

∇µFµν =
1√
|g|

∂µ

(√
|g|Fµν

)
= 0 , (19)

as may be obtained from a Lagrangian density L = − 1
4

√
|g|FµνFµν. To obtain the modified Maxwell149

equations for the electric and magnetic field strengths, one may now simply extract the relevant terms150

from the covariant form given above, working in a particular coordinate system [60]. For the resulting151

wave equations, as with any wave equation on a curved spacetime, obtaining a general solution is a152

highly non-trivial task [47]. However, on simple spacetimes such as we will consider later, it is possible153

to obtain analytic solutions.154

3.2. Particles in curved spacetimes155

To quantise the electromagnetic field in the manner of [35] our starting point must be to write
down an appropriate Fock space for experimentally observable photon states. On curved spacetimes
this is complicated by the lack of a consistent frame-independent basis for such a space. To see why,
consider that to introduce particle states in quantum field theory, we must first write the solutions to a
momentum-space wave equation as a superposition of orthonormal field modes, which are split into
positive and negative frequency modes ( fi, f ∗i ). In order for us to do this, the spacetime must have a
timelike symmetry. Symmetries of spacetimes are generated by Killing vectors, V, which satisfy

∇µVν +∇νVµ = 0 . (20)

If Vµ is, in addition, timelike at asymptotic infinity then it defines a timelike Killing vector Kµ. The156

presence of such a vector defines a stationary spacetime, in which there always exists a coordinate157

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 July 2019                   

Peer-reviewed version available at Entropy 2019, 21, 844; doi:10.3390/e21090844

https://doi.org/10.3390/e21090844


7 of 24

frame such that ∂tgµν = 0, where x0 = t in this coordinate set is the Killing time. If, in addition, Kµ is158

always orthogonal to a family of spacelike hypersurfaces then the spacetime is said to be static, and in159

addition we have gti = 0. Conceptually, the spacetime background is fixed but fields can propagate160

and interact. Particle states can only be canonically introduced with a frequency splitting. Hence, to161

define particles in a curved spacetime there must be a timelike Killing vector [53].162

Canonical field quantisation morphs the field into an operator acting on a Fock space of particle
states, promoting the coefficients of the positive frequency modes to annihilation operators and those
of negative frequency modes to creation operators [33,50]. General field states are therefore critically
dependent on the frequency splitting of the modes, which itself depends on the background geometry
of the spacetime [52]. In general, we define positive and negative frequency modes fωk of frequency
ωk with respect to the timelike Killing vector Kµ, by using the definition

£K fωk =

{
−iωk fωk +ve frequency
iωk fωk −ve frequency

, (21)

where £K is the coordinate-invariant Lie derivative along Kµ, which, in this case, is given by Kµ∂µ.
However, a particle detector reacts to states of positive frequency with respect to its own proper time
τ, not the Killing time [55]. For a timelike observer with worldline xµ on a (not necessarily stationary)
spacetime, the proper time is defined by the metric gµν infinitesimally as

dτ =
√

gµνdxµdxν . (22)

A given detector with proper time τ has positive frequency modes gωk satisfying

dxµ

dτ
∇µgωk = −iωkgωk , (23)

and they will, in general, only cover part of the spacetime. To consistently approach quantisation we163

need these detector modes to relate to the set fωk defined with respect to the timelike Killing vector.164

Fortunately, the set of modes fωk forms a natural basis for the detector’s Fock space if the proper time τ165

is proportional to the Killing time t. This occurs if the future-directed timelike Killing vector is tangent166

to the detector’s trajectory [46,55].167

Even with a timelike Killing vector and its associated symmetry, solving a given wave equation
and hence obtaining mode solutions can still be highly non-trivial [47]. Considering a static spacetime
greatly simplifies this as the d’Alembertian operator, � = ∇µ∇µ, that appears in the general wave
equation can be separated into pure spatial and temporal derivatives, allowing us to easily write
separable mode solutions [46,52]

fωk(x) = e−iωktΣωk(x) . (24)

These modes are then positive-frequency in the above sense, and conjugate modes f ∗ωk
are negative168

frequency. The set ( fωk , f ∗ωk
) then forms a complete basis of solutions for the wave equation and169

provides a suitable basis for particle detectors.170

However, when two distinct inertial particle detectors follow different geodesic paths in the171

spacetime, each will have its own unique proper time, determined by its motion and the local geometry.172

But this proper time is what we have used in Equation (23) to define the basis modes associated with a173

given particle Fock space associated with a particle detector. Thus the detectors will define the particle174

states they observe in different manners, and will not agree on a natural set of basis modes [52,53,68].175

This has no counterpart in inertial Minkowski space, where there is a global Poincaré symmetry, but176

will be unavoidable in our scheme.177
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3.3. Covariant and gauge-independent electromagnetic field quantisation scheme178

Accommodating for the above considerations allows the physically motivated scheme [35] to be179

covariantly generalised to static curved spacetimes.180

3.3.1. Hilbert space181

Since for static spacetimes there exists a global timelike Killing vector we can define positive and182

negative frequency modes and thus introduce a well-defined particle Fock space. Again we assume183

the existence of photons on the considered spacetime. As travelling waves on the spacetime, these184

photons are again characterised by their physical, transverse polarisation λ and wave-vector k [69].185

Taking these as labels for general states yields again the states in Equation (9) as the basis states of the186

quantised field. Physical energy eigenstates have integer values of nkλ and are associated with energy187

ωk. Thus the field Hamiltonian must again satisfy Equation (10), allowing it to be written in terms188

of independent ladder operators [66]. In the following, we denote these by bkλ and assume that they189

satisfy the equal time canonical commutation relations190

[b̂kλ, b̂k′λ′ ] = 0 , [b̂†
kλ, b̂†

k′λ′ ] = 0 , [b̂kλ, b̂†
k′λ′ ] = δλλ′δ

3(k− k′) . (25)

Importantly, the bkλ generate a distinct Fock space from that of the ladder operators utilised in the191

Minkowskian case.192

3.3.2. Hamiltonian193

To write down the full field or classical Hamiltonian requires some care, as a Hamiltonian is a
component of the energy-momentum tensor

Tµν = − 2√
|g|

δSmatter

δgµν , (26)

where Smatter is the action determining the matter content on the spacetime. As a component of a
tensor the Hamiltonian itself is not invariant under general coordinate transformations. On stationary
spacetimes a conserved energy equal to the Hamiltonian can be introduced through the timelike
Killing current

Jµ = KνTµν , (27)

which satisfies the continuity equation∇µ Jµ = 0. Stokes’s theorem can then be used to integrate over
a spacelike hypersurface Σ in three dimensions, giving

H =
∫

Σ
d3x

√
|γ|nµ Jµ , (28)

where γ = det(γij) with γij being the induced metric on Σ and nµ being the timelike unit normal
vector to Σ. On stationary spacetimes the result of this integral is the same for all hypersurfaces Σ
[46,70]. For the electromagnetic field, the variation in Equation (26) yields

Tµν = FµρFρ
ν +

1
4

gµνFρσFρσ , (29)

from which we can obtain a covariant form of the classical electromagnetic Hamiltonian.194

Note that, since in Equation (28) Σ is a spacelike hypersurface, nµ must be timelike. Thus there
exists a frame in which nµ Jµ = n0 J0, and as this is a scalar this is valid in any frame. We also have that
Jµ = Tµ

0 , so we seek T0
0 . On a static spacetime T0

0 = g00T00, so

T0
0 =

1
2

(
E2 + B2

)
, (30)
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where in the intermediate step we have used the Minkowski field strength tensor, as the quantities are
scalars. Hence we obtain the electromagnetic field Hamiltonian

H =
∫

Σ
d3x

1
2

(
E2 + B2

)√
|γ|n0K0 . (31)

This result is consistent with the literature [45], and reduces to the familiar expression in Equation (15)195

in Minkowski space.196

For the covariant analogue of the quantum field Hamiltonian, we note that the field Hamiltonian
used in the Minkowskian gauge-independent scheme, given in Equation (11), has a similar functional
form to the Hamiltonian for a quantised scalar field; they are identical up to labelling and
choice of integration measure. It has been established by Friis et al. [16] that the propagation of
transverse electromagnetic field modes can be well approximated by such an uncharged field, and
this technique has been used to determine the effects of spacetime curvature on satellite-based
quantum communications and to make metrology predictions [23,26]. In the following, we use
this approximation to justify the form of the electromagnetic field Hamiltonian from that of a real
scalar field with the equation of motion (�+ m2)φ = 0. The Hamiltonian density on a static manifold
with Killing time t is

H =

√
|g|
2

(
∂tφ∂tφ− ∂iφ∂iφ +

1
2

m2φ2 +
1
2

ξRφ

)
. (32)

The final term pertains to the coupling between the spacetime background and the field. Given we just197

seek to study photons propagating on some curved background and are ignoring their back-reaction198

on the geometry, we can choose ξ = 0. This is known as the minimal coupling approximation.199

Since on static spacetimes the d’Alembertian permits separable solutions, we can write φ =

ψωk(x)e
±iEωk t [46,52]. Here ψωk , Eωk are the eigenstates of the Klein-Gordon operator (�+ m2). Upon

quantisation, the field operator for a real scalar field can now be written as a linear superposition of
these modes with ladder operators bωk , b†

ωk
defining the Fock space. However, we must also account

for the non-uniqueness of particle states in curved spacetimes. One set of Fock space operators is
often not able to cover an entire spacetime, so we will include a sum over distinct sets of operators,
b(i)ωk , b(i)†ωk . Following Fulling [52] we introduce a measure µ(ωk) such that if the eigenstates form a
complete basis for the Hilbert space of states, allowing a general function to be written as F(x) =∫

dµ(ωk) ( f (ωk)ψωk(x)), the inner product on the Hilbert space becomes

〈F1, F2〉 =
∫

d3x
√
|g|gttF∗1 F2 =

∫
dµ(ωk) f ∗1 f2 . (33)

With this measure, the Hamiltonian field operator for a minimally-coupled scalar field on any static
spacetime can be written as [52]

Ĥ =
∫

dµ(ωk)∑
i

E(i)
ωk

[
b̂(i)†ωk b̂(i)ωk +

1
2

δ(0)
]

. (34)

Thus using the approximation of Friis et al. [16], we obtain the same functional form for the free
electromagnetic quantised Hamiltonian on any static spacetime. To incorporate the direction of
propagation we can instead label modes in the above expressions by their wave-vector satisfying
|k| = ωk. Then the integration measure µ(ωk) can be taken as dµ(ωk) = d3k. This applies since

F(x) =
∫

d3k ( f (k)ψk(x)) (35)
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and the inner product of two such functions is200

〈Fk, Fk′〉 =
∫

d3k
∫

d3k′
∫

d3x
√
|g|gtt f ∗k fk′ψ

∗
kψk′

=
∫

d3k
∫

d3k′ f ∗k fk′ 〈ψ∗k, ψk′〉

=
∫

d3k f ∗k fk . (36)

To obtain the third line we have used that ψk and ψk′ are eigenstates of a self-adjoint operator [52].
Physical photon modes will also be indexed by their transverse polarisation, so we also introduce an
additional mode label for the polarisation λ. Thus in all, for a minimally-coupled electromagnetic field
on a static Lorentzian manifold the quantised field Hamiltonian for the Fock space defined in Equation
(9) can be taken as

Ĥ = ∑
λ=1,2

∫
d3k

(
∑

i
ω
(i)
k b̂(i)†kλ b̂(i)kλ + H0

)
. (37)

Other than the sum over distinct sectors, this result is no different from its Minkowskian counterpart;201

this has only been possible with careful considerations of the static curved background.202

3.3.3. Electromagnetic field observables203

Since the classical Hamiltonian remains quadratic in the electric and magnetic fields, and the204

quantised field Hamiltonian is still quadratic in the ladder operators, we can again make the ansatz205

that the electromagnetic field operators are linear superpositions of creation and annihilation operators,206

with the coefficients being negative and positive frequency modes respectively with respect to the207

future-directed timelike Killing vector Kµ. We can therefore make an ansatz akin to that of the208

Minkowskian scheme of Sec. 2.3. The only modification we propose is the addition of a sum over209

spacetime sectors as introduced in the previous section. Including such flexibility will be essential in210

Sec. 4 when we quantise the electromagnetic field in an accelerated frame.211

Thus the ansatz for the field operators becomes212

Ê = ∑
λ=1,2

∫
d3k

(
∑

i
p(i)kλ b̂(i)kλ + H.c.

)
êλ ,

B̂ = ∑
λ=1,2

∫
d3k

(
∑

i
q(i)kλ b̂(i)kλ + H.c.

)
(k̂× êλ) , (38)

where pkλ and qkλ are unknown positive-frequency mode functions of all the spacetime coordinates,
and êλ is a unit polarisation vector orthogonal to the direction of the wave’s propagation at a point x
in the spacetime. To determine the unknown mode functions, we demand that the expectation values
of the operators satisfy the form of Maxwell’s equations explicit in E and B that derives from

1√
|g|

∂µ

(√
|g|Fµν

)
= 0 and ∂[σFµν] = 0 . (39)

In general this could be highly non-trivial and is indeed the greatest obstacle to a simple implementation213

of the scheme. Solving wave equations on curved spacetimes is a difficult task [47], so we would like214

to again follow the Minkowskian scheme and simplify the task by using a Heisenberg equation of215

motion.216

To get around the manifest non-covariance of Equation (13), we note that since Ĥ generates
a unitary group that implements time-translation symmetry on the Fock space, the equation is
a geometric expression of the fact that time evolution of operators is generated by the system’s
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Hamiltonian [52]. Considering the effect of an infinitesimal Poincaré transformation on an observable
Ô thus gives

∂µÔ = −i[Ô, P̂µ] , (40)

from which Equation (13) can be obtained as the 0th component [49,71,72]. Generalising this expression
to curved spacetimes is then a simple matter of applying the minimal-coupling principle, giving

∇µÔ = −i[Ô, P̂µ] . (41)

However, it is common to only consider evolution due to the Hamiltonian, in which case the Heisenberg
equation is made covariant by using a proper time derivative to give [73–75]

dÔ
dτ

= −i[Ô, Ĥ] . (42)

Both approaches are used in the literature as covariant generalisations of the Heisenberg equation, yet
they do not immediately appear to give the same results. To connect the two, we multiply Equation
(41) by a tangent vector,

Uµ∇µÔ = −i
[
ÔUµ P̂µ −Uµ P̂µÔ

]
, (43)

where we have assumed that it commutes with all the operators. Along a curve xα the directional217

derivative of any given tensor T is dT
dλ = dxα

dλ ∇αT = Uα∇αT , where λ is any affine parameter. The218

case λ = τ promotes Uµ to the four velocity. For a particle on a stationary spacetime, in its rest frame219

UµPµ = H, and as this is a scalar this holds in any frame. Thus one obtains Equation (42), which is the220

proper time covariant Heisenberg equation of motion.221

Our generalised quantisation scheme will apply this covariant Heisenberg equation to the
expectation value 〈Ô〉 of a general state in the photon Fock space |ψ〉,

∇0〈Ô〉 = −i〈[Ô, Ĥ]〉 . (44)

This gives the temporal evolution in the wave equations resulting from Equation (39), where Ĥ is
taken as the field Hamiltonian of Equation (37). If the form of Maxwell’s equations on the spacetime
can be obtained and solved for the expectation values of the field operators using this procedure, the
constant terms are determined by demanding that

Ĥ ≡ 1
2

∫
Σ

d3x
(

Ê2 + B̂2
)√

γn0K0 (45)

on the spacelike hypersurface Σ. As the integration over this hypersurface is independent of the choice222

of surface and is constant, this holds for all time. In this manner, the unknown modes in Equation (38)223

can be determined and the electromagnetic field on a static, 4-dimensional Lorentzian manifold can be224

quantised.225

3.3.4. Summary of scheme226

Let us reflect on our construction. We have taken the Minkowskian gauge-independent227

electromagnetic field quantisation scheme in Sec. 2.3 and lifted it onto a static Lorentzian manifold228

with metric gµν. Assuming the existence of detectable photons, the presence of a global timelike Killing229

vector allowed the definition of positive and negative frequency modes and thus the introduction of a230

well-defined particle Fock space, with general photon states labelled by their physical polarisation231

λ and wave-vector k. We introduced a ladder-operator structure for the Fock space, and using the232

approximation of Friis et al. [16] argued that this Fock space is associated with the field Hamiltonian of233

Equation (37) for minimal coupling to the background geometry.234
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The fact that both the field Hamiltonian Ĥ and the classical Hamiltonian H of Equation (31)235

were quadratic in the ladder operators or field strengths respectively allowed the proposal of a236

linear ansatz for the electric and magnetic field operators in terms of unknown wave modes. The237

scheme is then restricted to the specific manifold in question by demanding that the expectation238

values of these operators satisfy the modified Maxwell equations deriving from Equation (39), which239

introduces an explicit metric dependence to the scheme. To facilitate solving the potentially non-trivial240

Maxwell equations we use a form of the covariant Heisenberg equation, which we expect from work in241

Minkowski space to then uniquely determine the functional form of the modes in the operator ansatz.242

To determine all constants in these modes we demand that if we promote the classical Hamiltonian to243

an operator, upon substitution of the field operators the field Hamiltonian is regained.244

By building off an already explicitly gauge-independent scheme, our method has the advantage245

of offering a gauge-independent and covariant route to the derivation of the Hamiltonian Ĥ and the246

electric and magnetic field observables, Ê and B̂, on curved spacetimes. However, so far the only247

justification we have that this field quantisation scheme will give a physical result is based on its248

progenitor in Minkowski space. To test the consistency of our approach with other field quantisation249

schemes, we now consider a specific non-Minkowskian spacetime as an example and show that250

standard physical results are reproduced.251

4. Electromagnetic field quantisation in an accelerated frame252

In this section we apply the general formalism developed above to a specific example:253

1-dimensional acceleration in Minkowski space. This situation is interesting as the non-inertial nature254

of this motion leads to observers having different notions of particle states, and is thus often considered255

first in developments of quantum field theory in curved spacetime. It is also the situation most easily256

accessible to experimental tests. We must note that Soldati and Specchia [34] have emphasised photon257

propagation in accelerated frames remains conceptually non-trivial due to the separation of physical258

and non-physical polarisation modes arising from standard quantisation techniques. Here we avoid259

these issues by only considering motion in the direction of acceleration (1D propagation) [33,34], and260

also by avoiding the use of canonical quantisation and immediately considering the physical degrees261

of freedom.262

4.1. Rindler space263

An observer in Minkowski space M accelerating along a one-dimensional line with proper
acceleration α appears to an inertial observer to travel along a hyperbolic worldline

xµ =

(
1
α

sinh(ατ),
1
α

cosh(ατ), 0, 0
)

, xµxµ = − 1
α2 , (46)

where τ is the accelerating observer’s proper time. As the proper acceleration α→ ∞, the hyperbolic264

worldline of Equation (46) becomes asymptotic to the null lines of M, x = t for t > 0 and x = −t for265

t < 0. The interior region in which the hyperbola resides is defined by |t| < x and is called the Right266

Rindler wedge (RR); if |t| < −x we have the Left Rindler wedge (LR). The union of both wedges yields267

the Rindler spaceR, which is a static globally hyperbolic spacetime [58].268

More concretely, we can obtain Rindler space by the coordinate transformation

t = ±ρ sinh(αζ) , x = ±ρ cosh(αζ) , y = y , z = z , (47)

where we call the coordinates (ζ, ρ, y, z) polar Rindler coordinates, with positive signs labelling points
in RR and negative signs labelling those in LR [76]. In this coordinate system, the metric associated
with the frame of accelerating observer O′ is [34,56,62]

ds2 = α2ρ2dζ2 − dρ2 − dy2 − dz2 . (48)
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Figure 1. Depiction of a 2-dimensional Minkowski space M. Regions I and III are the future and past
light cones of the observer O at the origin, while regions II and IV are the Right Rindler wedge (RR)
and Left Rindler wedge (LR) respectively. The worldline of a uniformly accelerated observer with
acceleration α is the displayed line of constant conformal Rindler coordinate ξ.

The right Rindler wedge is covered by the set of all uniformly accelerated motions such that α−1 ∈ R+,269

and the boundaries of Rindler space are Cauchy horizons for the motion of O′ [61,63].270

Many studies of this spacetime choose to introduce conformal Rindler coordinates (ξ, η, y, z)
[58,76], defined by the coordinate transformation

t = ±a−1eaξ sinh(aη) , x = ±a−1eaξ cosh(aη) , y = y , z = z , (49)

where a ∈ R is a positive constant such that ae−aξ = α, so the proper time τ of O′ relates to η as
τ = eaξ η. The two coordinate systems forR hence relate as

ρ = a−1eaξ and αζ = aη . (50)

Lines of constant Rindler coordinates are shown in Fig. 1. Rindler space can thus also be associated
with the metric line element

ds2 = e2aξ(dη2 − dξ2)− dy2 − dz2 . (51)

These coordinates are useful because worldlines with ξ = 0 have constant acceleration a = α [58].271

From the discussion of Killing vectors in Sec. 3.3, it is immediate that since the metric components272

are independent of ζ or η in the respective coordinate systems, ∂η ≡ α
a ∂ζ is a Killing field forR, and273

moreover the field is timelike. However in LR the field is orientated in the past time direction, so the274

future-directed timelike Killing vector in this wedge is ∂(−η) = −∂η ≡ − α
a ∂ζ . To deal with this when275

considering wave propagation, one must introduce two disjoint sets of positive-frequency modes f (i)k ,276

i = L, R. These satisfy277

∂η f (R)
k = −iωk f (R)

k and − ∂η f (L)
k = −iωk f (L)

k , (52)

so each set is positive-frequency with respect to its appropriate future-directed timelike Killing vector.278

These sets and their conjugates form a complete basis for solutions of the wave equation onR [46,51].279

As a region of Minkowski space Rindler space is a flat spacetime with no matter content [64].
Despite this, because of the spacetime’s non-inertial nature covariant considerations must be applied

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 July 2019                   

Peer-reviewed version available at Entropy 2019, 21, 844; doi:10.3390/e21090844

https://doi.org/10.3390/e21090844


14 of 24

when working inR. For example the naïve divergence ∂µ Aµ 6= ∂µ Aµ as required by Lorentz invariance,
and we have non-zero Christoffel symbols

Γξ
ξξ = Γξ

ηη = Γη
ηξ = Γη

ξη = a . (53)

With the Christoffel symbols covariant derivatives ∇µ can be taken, and the timelike Killing vector280

fields ∂η and ∂(−η) can be shown to formally satisfy Equation (20).281

4.2. Electromagnetism in Rindler space282

To apply our covariant gauge-independent quantisation scheme to accelerating frames, we need
to consider classical electromagnetism in Rindler space. Our starting point, the field strength tensor,
takes the standard form

FRµν =


0 E1

R E2
R E3

R
−E1
R 0 −B3

R B2
R

−E2
R B3

R 0 −B1
R

−E3
R −B2

R B1
R 0

 . (54)

The explicit relations between the Rindler fields and those in Minkowski space are given in Appendix
A. These relations are taken to define the fields in the accelerated frame. For the Maxwell equation we
need the contravariant field strength tensor Fµν = gµσgνρFσρ. Because of the metric contractions this is
explicitly coordinate dependent. In conformal coordinates we have

Fµν
R =


0 −E1

Re−4aξ −E2
Re−2aξ −E3

Re−2aξ

E1
Re−4aξ 0 −B3

Re−2aξ B2
Re−2aξ

E2
Re−2aξ B3

Re−2aξ 0 −B1
R

E3
Re−2aξ −B2

Re−2aξ B1
R 0

 . (55)

The polar coordinate form of this equation can be found in Appendix A.283

The Maxwell equations that incorporate the spacetime’s non-trivial geometry now follow from
Equation (39). In Rindler space and conformal coordinates, g = −e4aξ . Thus we obtain

e−2aξ ∂ξ E1
R − 2aE1

Re−2aξ + ∂yE2
R + ∂zE3

R = 0 ,

e−2aξ ∂ηE1
R = ∂yB3

R − ∂zB2
R ,

∂ηE2
R = e2aξ∂zB1

R − ∂ξ B3
R ,

∂ηE3
R = ∂ξ B2

R − e2aξ∂yB1
R .

(56)

The set of equations deriving from the Bianchi identity are exactly the same as in flat space; these are284

listed in Appendix A, along with the full Maxwell equations in polar coordinates.285

4.3. Field quantisation in Rindler space286

Knowing how classical electric and magnetic amplitudes evolve in Rindler space, we are now in a287

position to derive the Hamiltonian Ĥ and the electric and magnetic field observables, Ê and B̂, of the288

quantised electromagnetic field in Rindler spaceR. For simplicity, we are only interested in photons289

which propagate along one spatial dimension. Suppose they travel along the ξ axis in conformal or290

along the ρ axis in polar coordinates, which from Equation (50) are proportional and thus equivalent.291

Thus photon modes will have a wave-number k and a polarisation λ = 1, 2 as their labels. Working in292

only one dimension, we have avoided the necessity to introduce more complicated polarisations [34].293

Unfortunately, the general states in Equation (9) are complicated inR by the existence of different
future-directed timelike Killing vectors in the two Rindler wedges, with ∂η in RR and −∂η in LR.
Hence there need to be two sets of positive-frequency modes for solutions of the wave equation on the
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spacetime. There will thus be two distinct Fock spaces representing the particle content in LR and RR.
A general particle number state for light propagating in one dimension inR will hence be

⊗
λ=1,2

∞⊗
k=−∞

∣∣∣nL
kλ, nR

kλ

〉
, (57)

with nL
kλ being the number of photons in LR and nR

kλ being the number of photons in RR. Thus the
physical energy eigenstates are in general degenerate and the Hamiltonian must satisfy

Ĥ
∣∣∣nL

kλ, nR
kλ

〉
=
[
ωk(nL

kλ + nR
kλ) + H0

] ∣∣∣nL
kλ, nR

kλ

〉
, (58)

with integer values for both nL
kλ and nR

kλ. This suggests that the field Hamiltonian Ĥ of Equation (37)
has to be expressed in terms of independent ladder operators for both wedges. Hence it can be written
as

Ĥ = ∑
λ=1,2

∫ ∞

−∞
dk
[
ωk
(
b̂R†

kλ b̂R
kλ − b̂L†

kλ b̂L
kλ

)
+ H0

]
, (59)

where the Eωk factor of Equation (34) and Equation (52) give the relative sign between the left and right
sectors. As we are considering photons propagating along ξ or ρ, and photons are electromagnetic
waves, the electric and magnetic fields must be in the transverse spatial dimensions y, z that are
unaffected by the acceleration and thus identical to their Minkowski counterparts. As described in
Sec. 2.3, the polarisation basis states correspond to choices of these fields. Here we choose

E, B =

{
(0, E, 0), (0, 0, B) λ = 1

(0, 0, E), (0,−B, 0) λ = 2 ,
(60)

where E and B are scalar functions of (ζ, ρ) or (η, ξ). With this choice of fields, the Rindler Maxwell
equations of Equation (56) reduce to

∂ηE = −∂ξ B , ∂ξ E = −∂η B , (61)

for conformal Rindler coordinates, and from Equation (A7) to

1
ρ2α2 ∂ζ E = −

(
∂ρB +

1
ρ

B
)

, ∂ρE = −∂ζ B , (62)

for polar coordinates. Both sets of equations hold in both LR and RR. The conformal expressions are294

now identical to the 1D Minkowski propagation considered in [35]. It should be emphasised that the295

apparent simplicity is a result of demanding 1-dimensional propagation along the accelerated spatial296

axis and choosing convenient polarisations.297

The non-inertial nature of Rindler space still requires care; recall from Equation (31) that to
determine the classical electromagnetic Hamiltonian we require a timelike Killing vector field. We
must also choose a spacelike hypersurface Σ with normal vector nµ and induced metric γij to integrate
over. In conformal Rindler coordinates, we know that the timelike Killing vector field is K = ∂η , so
Kµ = δ

µ
η . Choosing Σ as being the hypersurface defined by η = 0 allows us to continue using the

spatial coordinates xi = (ξ, y, z). Hence, the full conformal Rindler metric of Equation (51) implies
γ = det(γij) = e−2aξ . Finally, since Σ is spacelike, nµ is normalised to +1, so

1 = gµνnµnν = e2a¸
(

n0
)2

, (63)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 July 2019                   

Peer-reviewed version available at Entropy 2019, 21, 844; doi:10.3390/e21090844

https://doi.org/10.3390/e21090844


16 of 24

giving n0 = e−aξ [46]. Hence the Hamiltonian in Rindler space is

H =
1
2

∫
dξ
(

E2 + B2
)

eaξ e−aξ δ
η
η

=
1
2

∫
dξ
(

E2 + B2
)

, (64)

so the initial apparent simplicity holds.298

Following our general prescription, we again make the ansatz that the field operators are linear
superpositions of the relevant ladder operators. As we are considering 1-dimensional propagation
with the electric and magnetic field vectors E and B as specified in Equation (60), we need only apply
the ansatz to the scalar components E and B for quantisation, giving

Ê = ∑
λ=1,2

∫ ∞

−∞
dk
(

pL
kλ b̂L

kλ + pR
kλ b̂R

kλ + H.c.
)

,

B̂ = ∑
λ=1,2

∫ ∞

−∞
dk
(

qL
kλ b̂L

kλ + qR
kλ b̂R

kλ + H.c.
)

,
(65)

where pi
kλ and qi

kλ are unknown functions of (η, ξ), and i = L, R for LR and RR respectively. Since the
left and the right wedges ofR are causally disjoint, we can demand that modes in different wedges
are orthogonal with respect to the inner product in Equation (36) [46]. Explicitly this yields

〈pL
kλ, pR

k′λ′〉 =
∫ ∞

−∞
dk p∗L

kλ pR
k′λ′ = 0 ,

〈p∗L
kλ , pR

k′λ′〉 =
∫ ∞

−∞
dk pL

kλ pR
k′λ′ = 0

with similar expressions for qi
kλ. To determine all the modes, we follow the recipe of Sec. 3.3 and299

demand that the expectation values of these field operators satisfy Equations (61) and (62).300

From now on we will work in the conformal Rindler coordinates (η, ξ) due to the wonderful
simplicity of their Maxwell equations [77]. To determine temporal evolution we use the Heisenberg
equation, which, as the time coordinate is η in this system and our observables Ô are scalars, is

∂ηÔ = −i[Ô, Ĥ]. (66)

Following our prescription, we compare expectation values of the ladder operators for spatial
derivatives and time evolution from Heisenberg’s equation by using our form of Maxwell’s equations.
In this case, using Equations (61) this procedure gives the relations

∂ξqi
kλ = iωk pi

kλ , (67a)

∂ξ pi
kλ = iωkqi

kλ . (67b)

Solving for pi
kλ we of course just obtain the wave equation,

(
∂2

ξ + k2
)

pi
kλ = 0, when we consider free,

on-shell photons with k2 = ω2
k. This equation admits separable solutions pi

kλ = χi
kλ(η)Pi

kλ(ξ), so as
there are no temporal derivatives we lose all temporal information. Writing down the spatial solution
is trivial:

Pi
kλ = Ji

λeikξ + Ki
λe−ikξ , (68)

where Ji
λ, Ki

λ ∈ C. To determine the temporal dependence of χkλ(η) we use that positive-frequency
Rindler modes must satisfy Equation (52). The two modes pL

kλ and pR
kλ must both be positive-frequency
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with respect to the future-direction of ∂η as they are coefficients of annihilation operators [50]. Thus
the difference between them will be in their time dependence. This gives that we must have

χL
kλ = eiωkη , χR

kλ = e−iωkη . (69)

This difference is a direct result of the two Rindler wedges having different future-directed timelike
Killing vectors. Thus in all, we have

pR
kλ(η, ξ) = UR

λ ei(kξ−ωkη) + VR
λ e−i(kξ+ωkζ) ,

pL
kλ(η, ξ) = UL

λei(kξ+ωkη) + VL
λ e−i(kξ−ωkη) .

(70)

We can then easily obtain the qi
kλ solutions from Equation (67a) as

qR
kλ(η, ξ) =

k
ωk

[
UR

λ ei(kξ−ωkη) −VR
λ e−i(kξ+ωkη)

]
,

qL
kλ(η, ξ) =

k
ωk

[
UL

λei(kξ+ωkη) −VL
λ e−i(kξ−ωkη)

]
.

(71)

We now seek to determine the unknown coefficients in these expressions. Similarly to Sec. 2.3, first301

note that wave modes propagating in the positive ξ direction inR should be functions of (kξ −ωkη)302

in RR where ∂η is the future-directed timelike Killing vector, and functions of (kξ + ωkη) in LR where303

it is −∂η . Similarly, modes propagating in the negative ξ direction should be functions of (kξ + ωkη)304

in RR and functions of (kξ −ωkη) in LR. These conditions imply VR = VL = 0.305

We then determine the remaining constants by demanding that the classical and the quantised
field Hamiltonians are equivalent, as in Equation (45). Since Ĥ is quadratic in the electric and magnetic
field operators, we obtain cross terms between LR and RR modes during the calculation. Integrating
over such terms gives the inner products in Equation (66), but as modes in the different wedges are
orthogonal these terms are identically 0, so there are no physical cross terms. Then after some algebra
and relying on the integral definition of the delta function, we arrive at

Ĥ = 2π ∑
λ=1,2

∫ ∞

−∞
dk
[
|UR

λ |2
(

2b̂†R
kλ b̂R

kλ + δ(0)
)
+ |UL

λ |2
(

2b̂†L
kλ b̂L

kλ + δ(0)
) ]

, (72)

where we have used the commutation relations in Equation (25). As in Sec. 2.3, to finally determine
the constant terms and zero-point energy we compare with Equation (59) which yields

|UR
λ |2 =

ωk
4π

, |UL
λ |2 =

ωk
4π

, H0 =
∫ ∞

−∞
dk ωk δ(0) . (73)

To obtain our final expressions for the electric and magnetic field operators we arbitrarily choose the306

phases of both UR
λ and UL

λ to give consistency with standard Minkowskian results, and multiply the307

electric field operator by polarisation unit vector êλ and the magnetic field operator by k̂× êλ. Thus in308

all, we obtain the final results309

Ê = i ∑
λ=1,2

∫ ∞

−∞
dk
√

ωk
4π

[
ei(kξ−ωkη) b̂R

kλ + ei(kξ+ωkη) b̂L
kλ + H.c.

]
êλ ,

B̂ = −i ∑
λ=1,2

∫ ∞

−∞
dk
√

ωk
4π

[
ei(kξ−ωkη) b̂R

kλ + ei(kξ+ωkη) b̂L
kλ + H.c.

]
(k̂× êλ) ,

Ĥ = ∑
λ=1,2

∫ ∞

−∞
dk ωk

[
b̂†R

kλ b̂R
kλ + b̂†L

kλ b̂L
kλ + δ(0)

]
. (74)
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These three operators are very similar to the electric and magnetic field operators, Ê, B̂ and Ĥ in310

Equations (11) and (14) in Minkowski space. When moving in only one dimension, the orientation of311

the electric and magnetic field amplitudes is still pairwise orthogonal and orthogonal to the direction312

of propagation. However, the electromagnetic field has become degenerate and additional degrees of313

freedom which correspond to different Rindler wedges have to be taken into account in addition to the314

wave numbers k and the polarisations λ of the photons. Finally, instead of depending on kx, the electric315

and magnetic field observables now depend on kξ ±ωkη, i.e. they depend not only on the position but316

also on the amount of time the observer has been accelerating in space and on their acceleration. Most317

importantly, Equation (74) can now be used as the starting point for further investigations into the318

quantum optics of an accelerating observer [5,36,44] and is expected to find immediate applications in319

relativistic quantum information [13–21,69].320

4.4. The Unruh effect321

As an example and to obtain a consistency check, we now verify that our results give the
well-established Unruh effect [55,56,58,59]. This effect predicts that an observer with uniform
acceleration α in Minkowski space measures the Minkowski vacuum as being a pure thermal state
with temperature

TUnruh =
α

2π
. (75)

Deriving this result relies on being able to switch between modes in Minkowski and modes in Rindler
space, which requires a Bogolubov transformation. This transformation allows us to switch between
the modes of different coordinate frames and generally transforms a vacuum state to a thermal state
[57,78]. For a field expansion in two complete sets of basis modes, φ = ∑i âi fi + â†

i f ∗i = ∑j b̂jgj + b̂†
j gj,

this relates the modes as
gi = ∑

j
αij f j + βij f ∗j ,

fi = ∑
j

α∗jigj − β jig∗j ,
(76)

where αij and βij are the Bogolubov coefficients [58]. Knowing these coefficients also allows the
associated particle Fock spaces to be related,

âi = ∑
j

αji b̂j + β∗ji b̂
†
j ,

b̂i = ∑
j

α∗ij âj − β∗ij â
†
j .

(77)

For transforming between the Rindler and Minkowski Fock spaces, the coefficients can be calculated322

using coordinate relations in a method first introduced by Unruh [55].323

Here our field modes are the expansions of the electric field operators in R and M with the
Minkowski results taking the same functional form. Following the standard approach [46,51], our
expressions for the field operators yield

αLL = αRR =
1

ωk

√
1

2 sinh(πωk
a )

e
πωk

2a

βLR = βRL =
1

ωk

√
1

2 sinh(πωk
a )

e−
πωk

2a .

(78)
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These immediately give the following relationship between the ladder operators:

b̂R
kλ =

1
ωk

√
1

2 sinh(πωk
a )

(
e

πωk
2a ĉR

kλ + e−
πωk

2a ĉL†
−kλ

)
,

b̂L
kλ =

1
ωk

√
1

2 sinh(πωk
a )

(
e

πωk
2a ĉL

kλ + e−
πωk

2a ĉR†
−kλ

)
.

(79)

The ĉi
kλ operators are associated with modes that can be purely expressed in terms of positive frequency

Minkowski modes (from the form of the field operators in Cartesian coordinates). They must thus share
the Minkowski vacuum, so ĉR

k |0M〉 = ĉL
k |0M〉 = 0. Because we possess the Bogolubov transformation

between Minkowski and Rindler space, we can now evaluate particle states seen by an observer inR,
given by b̂i

k, in terms of a Minkowski Fock space given by ci
k. In particular, evaluating the RR number

operator on the Minkowski vacuum gives

〈0M|b̂R†
k b̂R

k |0M〉 =
1

ω2
k

δ(0)

exp( 2πωk
a )− 1

. (80)

This energy expectation value is the same as the energy expectation value of a thermal Planckian state324

with temperature a
2π . For the case a = α this is the prediction that exactly constitutes the Unruh effect,325

and thus verifies that the results of our quantisation scheme match known theoretical predictions.326

Having a 6= α just corresponds to a red-shift [46]. The external factor 1/ω2
k is different to that for a327

standard scalar field; this is just a remnant of the different normalisation of our electric field operator328

and does not affect the physical prediction, with such factors indeed sometimes appearing in the329

literature [47].330

5. Conclusions331

This paper generalises the physically-motivated quantisation scheme of the electromagnetic field332

in Minkowski space [35] to static spacetimes of otherwise arbitrary geometry. As shown in Sec. 3, such333

a generalisation requires only minimal modification of the original quantisation scheme in flat space.334

In order to assess the validity of the presented generalised approach, we apply our findings in Sec. 4 to335

the well understood case of Rindler space: the relevant geometry for a uniformly accelerating observer.336

Since this reproduces the anticipated Unruh effect, it supports the hypothesis that our approach is a337

consistent approach to the quantisation of the electromagnetic field on curved spacetimes.338

The main strength of our quantisation scheme is its gauge-independence, i.e. its non-reliance339

on the gauge-dependent potentials of more traditional approaches. Instead it relies only on the340

experimentally verified existence of electromagnetic field quanta. As such, our scheme provides a341

more intuitive approach to field quantisation, while still relying on well established concepts and342

constructions in quantum field theory in curved space. Given this and the applicability of our results343

to accelerating frames in an otherwise flat spacetime, it seems likely that our approach can also be344

used to model more complex but experimentally-accessible situations with applications, for example,345

in relativistic quantum information.346

The specific case of Rindler space, as considered in this paper, led to equations with347

straightforward analytic solutions. This will likely not be true in more general settings, where the348

necessary wave equations will be non-trivial and will possibly require approximation or numerical349

solution. This fact is partially mitigated by our use of the Heisenberg equation, thereby reducing350

the necessary calculation to an ordinary differential equation and commutation relation, rather351

than a partial differential equation. Furthermore, recall that the scheme laid out in this paper is a352

generalisation of that in flat space to the case of static curved spacetimes. This simplified the definition353

and construction of the quantisation scheme, due to our reliance on spacelike hypersurfaces. When354

applied to the more general case of stationary spacetimes, the correct prescription of the scheme355
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becomes less clear and will require further theoretical development.356
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Appendix A. Further results of Electromagnetism in Rindler space367

To define the electric and magnetic fields in Rindler space we apply coordinate transformations to
the Minkowski field strength tensor,

FRµν =
∂xα

M
∂xµ
R

∂xβ
M

∂xν
R

Fαβ , (A1)

where xµ
R are the coordinates in Rindler space and xµ

M are the coordinates used by an intertial observer.
The Rindler electric and magnetic fields are defined as the elements of FRµν. In polar and conformal
coordinates this transformation is given by Equations (47) and (49) respectively, which readily give the
Jacobian of the transformation as

Jµ
α ≡ ∂xα

M
∂xµ
R

=


±αρ cosh(αζ) ± sinh(αζ) 0 0
±αρ sinh(αζ) ± cosh(αζ) 0 0

0 0 1 0
0 0 0 1

 (A2)

in polar Rinder coordinates and

Jµ
α ≡ ∂xα

M
∂xµ
R

=


±eaξ cosh(aη) ±eaξ sinh(aη) 0 0
±eaξ sinh(aη) ±eaξ cosh(aη) 0 0

0 0 1 0
0 0 0 1

 (A3)

in conformal Rindler coordinates, where upper signs refer to RR and lower signs to LR. Transforming
the Minkowski field strength tensor in Equation (A1), we obtain FRµν in Equation (54), where the Rindler
space elements are defined in either wedge by the transformations

E1
R = E1

Mαρ ,

E2
R =

(
E2
Mαρ cosh(αζ)− B3

M sinh(αζ)
)

,

E3
R =

(
E3
Mαρ cosh(αζ) + B2

M sinh(αζ)
)

,

B1
R = B1

M ,

B2
R =

(
B2
M cosh(αζ) + E3

Mαρ sinh(αζ)
)

,

B3
R =

(
B3
M cosh(αζ)− E2

Mαρ sinh(αζ)
)

,

(A4)
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in polar Rindler coordinates and

E1
R = E1

Me2aξ ,

E2
R =

(
E2
M cosh(aη)− B3

M sinh(aη)
)

eaξ ,

E3
R =

(
E3
M cosh(aη) + B2

M sinh(aη)
)

eaξ ,

B1
R = B1

M ,

B2
R =

(
B2
M cosh(aη) + E3

M sinh(aη)
)

eaξ ,

B3
R =

(
B3
M cosh(aη)− E2

M sinh(aη)
)

eaξ ,

(A5)

in conformal Rindler coordinates. While the conformal coordinate form of the field strength tensor is
listed in Equation (55), that for polar coordinates, which equals

Fµν
R =



0 −E1
R

ρ2α2
−E2
R

ρ2α2
−E3
R

ρ2α2

E1
R

ρ2α2 0 −B3
R B2

R
E1
R

ρ2α2 B3
R 0 −B1

R
E1
R

ρ2α2 −B2
R B1

R 0


, (A6)

was omitted. Then, since in polar coordinates, g = −ρ2α2, Equation (5) gives that the modified
Maxwell equations in these coordinates are

∂ρE1
R −

1
ρ

E1
R + ∂yE2

R + ∂zE3
R = 0 ,

1
ρ2α2 ∂ζ E1

R = ∂yB3
R − ∂zB2

R ,

1
ρ2α2 ∂ζ E2

R = ∂zB1
R − ∂ρB3

R −
1
ρ

B3
R ,

1
ρ2α2 ∂ζ E3

R = ∂ρB2
R +

1
ρ

B2
R − ∂yB1

R ,

(A7)

while the Bianchi identity leads to
∂iBi
R = 0 ,

∂ζ B1
R = ∂zE2

R − ∂yE3
R ,

∂ζ B2
R = ∂ρE3

R − ∂zE1
R ,

∂ζ B3
R = ∂yE1

R − ∂ρE2
R ,

(A8)

as in flat space. These equations also hold for conformal coordinates; one just replaces ζ with η and ρ368

with ξ.369
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