Preprint Article Version 1 This version is not peer-reviewed

Engineering Synthetic Microbial Communities through Selective Biofilm Cultivation Device for the Production of Fermented Beverages

Version 1 : Received: 25 June 2019 / Approved: 26 June 2019 / Online: 26 June 2019 (15:51:06 CEST)

A peer-reviewed article of this Preprint also exists.

Ly, S.; Bajoul Kakahi, F.; Mith, H.; Phat, C.; Fifani, B.; Kenne, T.; Fauconnier, M.-L.; Delvigne, F. Engineering Synthetic Microbial Communities through a Selective Biofilm Cultivation Device for the Production of Fermented Beverages. Microorganisms 2019, 7, 206. Ly, S.; Bajoul Kakahi, F.; Mith, H.; Phat, C.; Fifani, B.; Kenne, T.; Fauconnier, M.-L.; Delvigne, F. Engineering Synthetic Microbial Communities through a Selective Biofilm Cultivation Device for the Production of Fermented Beverages. Microorganisms 2019, 7, 206.

Journal reference: Microorganisms 2019, 7, 206
DOI: 10.3390/microorganisms7070206

Abstract

used traditional microbial starters revealed that effective fermentation requires three microbial strains with complementary metabolic activities: filamentous fungi (Rhizopus oryzae), yeast (Saccharomyces cerevisiae), and lactic acid bacteria (Lactobacillus plantarum). Relative to natural communities, modulation of the ratio of these three microorganisms led to significant differences not only in terms of ethanol and organic acid production, but also with the profile of volatile compounds. However, inoculation of an equal ratio of spores/cells of the three aforementioned microbial strains led to a flavor profile and ethanol yield similar to that obtained with natural communities. Compartmentalization of metabolic tasks through the use of a biofilm cultivation device allowed further improvement of the entire fermentation process, notably by increasing the amount of key components of the aroma profile of the fermented beverage (i.e., mainly phenylethyl alcohol, isobutyl alcohol, isoamyl alcohol, and 2-methyl-butanol) and reducing the amount of off-flavor compound. This study represents an initial step toward understanding interkingdom microbial interactions with a strong potential for application in the food biotechnology.

Subject Areas

microbial interactions; cross-feeding; synthetic communities; volatolomic; biofilm; alcoholic fermentation

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.