Preprint
Article

Land Cover Maps Production with High Resolution Satellite Image Time Series and Convolutional Neural Networks: Adaptations and Limits for Operational Systems

Altmetrics

Downloads

820

Views

1081

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

08 August 2019

Posted:

09 August 2019

You are already at the latest version

Alerts
Abstract
The Sentinel-2 satellite mission offers high resolution multispectral time series image data, enabling the production of detailed land cover maps globally. At this scale, the trade-off between processing time and result quality is a central design decision. Currently, this machine learning task is usually performed using pixelwise classification methods. The radical shift of the computer vision field away from hand engineered image features and towards more automation by representation learning comes with many promises, including higher quality results and less engineering effort. In this paper we assess fully convolutional neural networks architectures as replacements for a Random Forest classifier in an operational context for the production of high resolution land cover maps with Sentinel-2 time series at the country scale. Our contributions include a framework for working with Sentinel-2 L2A time series image data, an adaptation of the U-Net model for dealing with sparse annotation data while maintaining high resolution output, and an analysis of those results in the context of operational production of land cover maps.
Keywords: 
Subject: Environmental and Earth Sciences  -   Remote Sensing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated