Preprint
Article

This version is not peer-reviewed.

Effect of the Quintessential Dark Energy on Weak Deflection Angle by Kerr-Newmann Black Hole

A peer-reviewed article of this preprint also exists.

Submitted:

12 June 2019

Posted:

13 June 2019

You are already at the latest version

Abstract
In this work, we study the weak gravitational lensing in the background of Kerr-Newman black hole with quintessential dark energy. Initially, we compute the deflection angle of light by charged black hole with quintessential dark energy by utilizing the Gauss-Bonnet theorem. Firstly, we suppose the light rays on the equatorial plane in the axisymmetric spacetime. In doing so, we first find the corresponding optical metrics and then calculate the Gaussian optical curvature to utilize in Gauss-Bonnet theorem. Consequently, we calculate the deflection angle of light for rotating charged black hole with quintessence. Additionally, we also find the deflection angle of light for Kerr-Newman black hole with quintessential dark energy. In order to verify our results, we derive deflection angle by using null geodesic equations which reduces to the deflection angle of Kerr solution with the reduction of specific parameters. Furthermore, we analyze the graphical behavior of deflection angle $\Theta$ w.r.t to quintessence parameter $\alpha$, impact parameter $b$, BH charge $Q$ and rotation parameter $a$. Our graphical analysis retrieve various results regarding to the deflection angle by the Kerr-Newman black hole with quintessential dark energy.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated