Preprint Article Version 1 This version is not peer-reviewed

An Agent-Based Model Simulation of Human Mobility Based on Mobile Phone Data: How Commuting Relates to Congestion

Version 1 : Received: 5 June 2019 / Approved: 6 June 2019 / Online: 6 June 2019 (11:31:48 CEST)

How to cite: Wu, H.; Liu, L.; Yu, Y.; Peng, Z.; Jiao, H.; Niu, Q. An Agent-Based Model Simulation of Human Mobility Based on Mobile Phone Data: How Commuting Relates to Congestion. Preprints 2019, 2019060049 (doi: 10.20944/preprints201906.0049.v1). Wu, H.; Liu, L.; Yu, Y.; Peng, Z.; Jiao, H.; Niu, Q. An Agent-Based Model Simulation of Human Mobility Based on Mobile Phone Data: How Commuting Relates to Congestion. Preprints 2019, 2019060049 (doi: 10.20944/preprints201906.0049.v1).

Abstract

Abstract:Commuting of residents in big city often brings tidal traffic pressure or congestions. Understanding the causes behind this phenomenon is of great significance for urban space optimization. Various spatial big data make possible the fine description of urban residents travel behaviors, and bring new approaches to related studies. The present study focuses on two aspects: one is to obtain relatively accurate features of commuting behaviors by using mobile phone data, and the other is to simulate commuting behaviors of residents through the agent-based model and inducing backward the causes of congestion. Taking the Baishazhou area of Wuhan, a local area of a mega city in China, as a case study, travel behaviors of commuters are simulated: the spatial context of the model is set up using the existing urban road network and by dividing the area into travel units; then using the mobile phone call detail records (CDR) of a month, statistics of residents' travel during the four time slots in working day mornings are acquired and then used to generated the OD matrix of travels at different time slots; and then the data are imported into the model for simulation. By the preset rules of congestion, the agent-based model can effectively simulate the traffic conditions of each traffic intersection, and can also induce backward the causes of traffic congestion using the simulation results and the OD matrix. Finally, the model is used for the evaluation of road network optimization, which shows evident effects of the optimizing measures adopted in relieving congestion, and thus also proves the value of this method in urban studies.

Subject Areas

mobile phone data; residents commuting behavior; agent-based model;urban planning; traffic congestion

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.