Preprint
Article

This version is not peer-reviewed.

Ranking of Normality Tests—An Appraisal through Skewed Alternative Space

A peer-reviewed article of this preprint also exists.

Submitted:

14 May 2019

Posted:

15 May 2019

You are already at the latest version

Abstract
In social & health sciences, many statistical procedures and estimation techniques rely on the underlying distributional assumption of normality of the data. Non-normality may lead to incorrect statistical inferences. This study evaluates the performance of selected normality tests on the stringency framework for the skewed alternative space. Stringency concept allows us to rank the tests uniquely. Bonett & Seier test (Tw) turns out to be the best statistics for slightly skewed alternatives and the Anderson-Darling (AD), Chen-Shapiro (CS), Shapiro-Wilk (W) and Bispo, Marques, & Pestana, (BCMR) statistics are the best choices for moderately skewed alternative distributions. Maximum loss of Jarque-Bera (JB) and its robust form (RJB), in terms of deviations from the power envelope, is greater than 50% even for large sample sizes which makes them less attractive in testing the hypothesis of normality against the moderately skewed alternatives. On balance, all selected normality tests except Tw and COIN performed exceptionally well against the highly skewed alternative space.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated