Preprint Article Version 1 This version is not peer-reviewed

Sensitivity Study of ANFIS Model Parameters to Predict the Pressure Gradient with Combined Input and Outputs Hydrodynamics Parameters in the Bubble Column Reactor

Version 1 : Received: 30 April 2019 / Approved: 6 May 2019 / Online: 6 May 2019 (09:07:13 CEST)

How to cite: Mosavi, A.; Shamshirband, S.; Chau, K. Sensitivity Study of ANFIS Model Parameters to Predict the Pressure Gradient with Combined Input and Outputs Hydrodynamics Parameters in the Bubble Column Reactor. Preprints 2019, 2019050044 (doi: 10.20944/preprints201905.0044.v1). Mosavi, A.; Shamshirband, S.; Chau, K. Sensitivity Study of ANFIS Model Parameters to Predict the Pressure Gradient with Combined Input and Outputs Hydrodynamics Parameters in the Bubble Column Reactor. Preprints 2019, 2019050044 (doi: 10.20944/preprints201905.0044.v1).

Abstract

Intelligent algorithms are recently used in the optimization process in chemical engineering and application of multiphase flows such as bubbling flow. This overview of modeling can be a great replacement with complex numerical methods or very time-consuming and disruptive measurement experimental process. In this study, we develop the ANFIS method for mapping inputs and outputs together and understand the behavior of the fluid flow from other output parameters of the bubble column reactor. Four inputs such as x coordinate, y coordinate, z coordinate, and air superficial velocity and one output such as pressure gradient are considered in the learning process of the ANFIS method. During the learning process, the different number of the membership function, type of membership functions and the number of inputs are examined to achieve the intelligent algorithm with high accuracy. The results show that as the number of inputs increases the accuracy of the ANFIS method rises up to  almost for all cases, while the increment in the number of rules has a effect on the intelligence of artificial algorithm. This finding shows that the density of neural objects or higher input parameters enables the moded for better understanding. We also proposed a new evaluation of data in the bubble column reactor by mapping inputs and outputs and shuffle all parameters together to understand the behaviour of the multiphase flow as a function of either inputs or outputs.

Subject Areas

artificial algorithm; machine learning; bubble column reactor; ANFIS; CFD; pressure gradient

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.