Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Methane Hydrate Stability and Potential Reserves in the Levant Basin, Southeastern Mediterranean Sea

Version 1 : Received: 20 April 2019 / Approved: 22 April 2019 / Online: 22 April 2019 (12:06:46 CEST)

A peer-reviewed article of this Preprint also exists.

Tayber, Z.; Meilijson, A.; Ben-Avraham, Z.; Makovsky, Y. Methane Hydrate Stability and Potential Resource in the Levant Basin, Southeastern Mediterranean Sea. Geosciences 2019, 9, 306. Tayber, Z.; Meilijson, A.; Ben-Avraham, Z.; Makovsky, Y. Methane Hydrate Stability and Potential Resource in the Levant Basin, Southeastern Mediterranean Sea. Geosciences 2019, 9, 306.

Abstract

To estimate The potential inventory of natural gas hydrates in the Levant Basin we correlated the gas hydrate stability zone (GHSZ), modeled with locally estimated thermodynamic parameters, with seismic indicators of gas. Compilation of oceanographic measurements define the deep-water temperature and salinity to 13.8°C and 38.8‰ respectively, predicting the top GHSZ at a water depth of 1250±5 m. Assuming beneath the seafloor a hydrostatic pore-pressure, the water body salinity, and geothermal gradients ranging between 20 to 28.5°C/km, yields a useful first-order base-GHSZ approximation. Our model predicts that the entire northwestern half of the Levant Basin lies within the GHSZ, with a median thickness of ~150 m. High amplitude seismic reflectivity (HASR) imaged on an extensive 3D seismic dataset, consistently correlates with verified active seafloor gas seepage and is pervasively distributed across the deep-sea fan of the Nile within the Levant. Two main trends observed for the distribution of HASR are suggested to represent: (1) shallow gas and possibly hydrates, within buried channel-lobe systems 25 to 100 m beneath the seafloor; and (2) a regionally discontinuous bottom simulating reflection (BSR) broadly matching the modeled base GHSZ. We therefore estimate the potential methane hydrates reserve within the Levant Basin at ~4 Tcf.

Keywords

gas hydrates, methane stability, seismic interpretation, Levant basin, eastern Mediterranean, climate change

Subject

Environmental and Earth Sciences, Geophysics and Geology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.