Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Improvement of Organosolv Fractionation Performance for Rice Husk through a Low Acid-Catalyzation

Version 1 : Received: 18 April 2019 / Approved: 19 April 2019 / Online: 19 April 2019 (09:52:04 CEST)

A peer-reviewed article of this Preprint also exists.

Kim, T.H.; Ryu, H.J.; Oh, K.K. Improvement of Organosolv Fractionation Performance for Rice Husk through a Low Acid-Catalyzation. Energies 2019, 12, 1800. Kim, T.H.; Ryu, H.J.; Oh, K.K. Improvement of Organosolv Fractionation Performance for Rice Husk through a Low Acid-Catalyzation. Energies 2019, 12, 1800.

Abstract

For the effective utilization of rice husk, organosolv fractionation was investigated to separate three main components (glucan, xylose, and lignin) with low acid concentration. Reaction temperatures of 170–190 °C, ethanol concentrations of 50–70% (v/v), and sulfuric acid concentrations of 0–0.7% (w/v) were investigated, with the reaction time and liquid-to-solid ratio kept constant at 60 min and 10, respectively. The fractionation conditions for the efficient separation into the three components of rice husk were determined to be 180 °C, 60% (v/v) of ethanol, and 0.25% (w/v) of sulfuric acid. Under these fractionation conditions, 86.8% of the xylan and 77.5% of the lignin were removed from the rice husk, and xylose and lignin were obtained from the liquid in 67.6% and 49.8% yields, respectively. The glucan digestibility of the fractionated rice husk was 85.2% with an enzyme loading of 15 FPU (filter paper unit) of cellulase per g-glucan.

Keywords

biomass; xylan; lignin; cellulose; pretreatment

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.